Skip to main content
Log in

Leakage current in a Si-based nanopore structure and its influence on noise characteristics

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We have measured leakage current in a silicon substrate-based nanopore membrane device immersed in an aqueous environment which typically shows the current level of few nA. This current level is compared with the measured current density (400 nA/cm2 at 1 V) from the pristine Si wafer (p-type, 1016/cm3 boron doping) indicating that the exposed Si surface in a nanopore membrane device acts as an electrochemical reaction site. The leakage current is drastically reduced from >10 nA to <100 pA at 1 V by the deposition of a dielectric layer to the Si-based nanopore membrane device. We also noted that the root-mean-square noise of the ionic current is also reduced from 38 to 28 pA in correlation with the reduction of leakage current, indicating that electrochemical reaction provides one of the major sources of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    Article  Google Scholar 

  • Chen P, Mitsui T, Farmer DB, Golovchenko J, Gordon RG, Branton D (2004) Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett 4(7):1333–1337

    Article  Google Scholar 

  • Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    Article  Google Scholar 

  • Derrington IM, Butler TZ, Collins MD, Manrao E, Pavlenok M, Niederweis M, Gundlach JH (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci USA 107(37):16060–16065

    Article  Google Scholar 

  • Hooge FN (1969) 1/f noise is no surface effect. Phys Lett A 29(3):139–140

    Article  Google Scholar 

  • Hooge FN (1994) l/f noise sources. IEEE Trans Electron Devices 41(11):1926–1935

    Article  Google Scholar 

  • Hoogerheide DN, Garaj S, Golovchenko JA (2009) Probing surface charge fluctuations with solid-state nanopores. Phys Rev Lett 102:256804

    Article  Google Scholar 

  • Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93:13770–13773

    Article  Google Scholar 

  • Li J, Stein D, McMulla C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometer length scales. Nature 412:166–169

    Article  Google Scholar 

  • McWhorter AL (1955) 1/f noise and related surface effects in Germanium. PhD Dissertation, MIT, Cambridge, MA

    Google Scholar 

  • Nam SW, Rooks MJ, Kim KB, Rossnagel SM (2009) Ionic field effect transistors with Sub-10 nm multiple nanopores. Nano Lett 9(5):2044–2048

    Article  Google Scholar 

  • Oh YJ, Bottenus D, Ivory CF, Han SM (2009) Impact of leakage current and electrolysis on FET flow control and pH changes in nanofluidic channels. Lab Chip 9:1609–1617

    Article  Google Scholar 

  • Polonsky S, Rossnagel S, Stolovitzky G (2007) Nanopore in metal-dielectric sandwich for DNA position control. Appl Phys Lett 91:153103

    Article  Google Scholar 

  • Siwy Z, Fulinski A (2002) Origin of 1/f noise in membrane channel currents. Phys Rev Lett 89(15):158101

    Article  Google Scholar 

  • Smeets RMM, Keyser UF, Dekker NH, Dekker C (2008) Noise in solid-state nanopores. Proc Natl Acad Sci USA 105(2):417–421

    Article  Google Scholar 

  • Smeets RMM, Dekker NH, Dekker C (2009) Low-frequency noise in solid-state nanopores. Nanotechnology 20:095501

    Article  Google Scholar 

  • Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2:537–540

    Article  Google Scholar 

  • Storm AJ, Storm C, Chen J, Zandbergen H, Joanny JF, Dekker C (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5(7):1193–1197

    Article  Google Scholar 

  • Tabard-Cossa V, Trivedi D, Wiggin M, Jetha NN, Marziali A (2007) Noise analysis and reduction in solid-state nanopores. Nanotechnology 18:305505

    Article  Google Scholar 

  • Tsutsui M, Taniguchi M, Yokota K, Kawai T (2010) Identifying single nucleotides by tunnelling current. Nat Nanotechnol 5:286–290

    Article  Google Scholar 

  • Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624

    Article  Google Scholar 

  • Wanunu M, Dadosh T, Ray V, Jin J, McReynolds L, Drndic M (2010) Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat Nanotechnol 5:807–814

    Article  Google Scholar 

  • Zhang XG (2001) Electrochemistry of silicon and its oxide. Kluwer Academic Publishers, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2010--0017697).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Bum Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MH., Lee, JH., Kim, HM. et al. Leakage current in a Si-based nanopore structure and its influence on noise characteristics. Microfluid Nanofluid 16, 123–130 (2014). https://doi.org/10.1007/s10404-013-1192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1192-y

Keywords

Navigation