Skip to main content
Log in

Phase diagrams of confined solutions of dimyristoylphosphatidylcholine (DMPC) lipid and cholesterol in nanotubes

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We have studied equilibrium morphologies of dimyristoylphosphatidylcholine lipid solution and cholesterol solution confined to nanotubes using dissipative particle dynamics (DPD) simulations. Phase diagrams regarding monomer concentration c versus radius of nanotube r for both solutions are attained. Three types of the inner surface of nanotubes, namely hydrophobic, hydrophilic, and hydroneutral are considered in the DPD simulations. A number of phases and molecular assemblies for the confined solutions are revealed, among others, such as the spiral wetting and bilayer helix. Several phases and assemblies have not been reported in the literature, and some are non-existence in bulk solutions. The ability to control the morphologies and self-assemblies within nanoscale confinement can be exploited for patterning interior surface of nanochannels for application in nanofluidics and nanomedical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Angelikopoulos P, Bock H (2008) Directed self-assembly of surfactants in carbon nanotube materials. J Phys Chem B 112(44):13793–13801

    Article  Google Scholar 

  • Arai N, Yasuoka K, Masubuchi Y (2007) Spontaneous self-assembly process for threadlike micelles. J Chem Phys 126(24):244905

    Article  Google Scholar 

  • Arai N, Yasuoka K, Zeng XC (2008) Self-assembly of surfactants and polymorphic transition in nanotubes. J Am Chem Soc 130(25):7916–7920

    Article  Google Scholar 

  • Arai N, Yasuoka K, Koishi T, Ebisuzaki T (2010) Asymmetric Brownian motor driven by bubble formation in a hydrophobic channel. ACS Nano 4(10):5905–5913

    Article  Google Scholar 

  • Arai N, Yasuoka K, Zeng XC (2012) Nanochannel with uniform and Janus surfaces: shear thinning and thickening in surfactant solution. Langmuir 28(5):2866–2872

    Article  Google Scholar 

  • Bai J, Wang J, Zeng XC (2006) Multiwalled ice helixes and ice nanotubes. Proc Natl Acad Sci USA 103(52):19664–19667

    Article  Google Scholar 

  • Can H, Kacar G, Atilgan C (2009) Surfactant formation efficiency of fluorocarbon- hydrocarbon oligomers in supercritical CO(2). J Chem Phys 131(12):124701

    Article  Google Scholar 

  • Chen Q, Li DY, Oiwa K (2007) The coordination of protein motors and the kinetic behavior of microtubule—a computational study. Biophys Chem 129(1):60–69

    Article  Google Scholar 

  • Cho HS, Dominick JL, Spence MM (2010) Lipid domains in bicelles containing unsaturated lipids and cholesterol. J Phys Chem B 114(28):9238–9245

    Article  Google Scholar 

  • Espanõl P, Warren PB (1995) Statical-mechanics of dissipative particle dynamics. Europhys Lett 30(4):191–196

    Article  Google Scholar 

  • Gelbart WM, Ben-Shaul A, Roux D (1994) Micelles, membranes, microemulsions, and monolayers. Springer, New York

    Book  Google Scholar 

  • Grafmueller A, Shillcock JC, Lipowsky R (2009) The fusion of membranes and vesicles: pathway and energy barriers from dissipative particle dynamics. Biophys J 96(7):2658–2675

    Article  Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys 107(11):4423–4435

    Article  Google Scholar 

  • Han S, Choi MY, Cumar P, Stanley HE (2011) Phase transitions in confined water nanofilms. Nat Phys 6(9):685–689

    Article  Google Scholar 

  • Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160

    Article  Google Scholar 

  • Illya A, Lipowsky R, Shillcock JC (2006) Two-component membrane material properties and domain formation from dissipative particle dynamics. J Chem Phys 125(11):114710

    Article  Google Scholar 

  • Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  • Khelashvili G, Pabst G, Harries D (2010a) Cholesterol orientation and tilt modulus in DMPC bilayers. J Phys Chem B 114(22):7524–7534

    Article  Google Scholar 

  • Khelashvili G, Mondal S, Andersen OS, Weinstein H (2010b) Cholesterol modulates the membrane effects and spatial organization of membrane-penetrating ligands for G-protein coupled receptors. J Phys Chem B 114(37):12046–12057

    Article  Google Scholar 

  • Koga K, Gao G, Tanaka H, Zeng XC (2001) Formation of ordered ice nanotubes inside carbon nanotubes. Nature 412(6849):802–805

    Article  Google Scholar 

  • Koubi L, Salz L, Tarek M, Scharf D, Klein ML (2003) Influence of anesthetic and non- immobilizer molecules on the physical properties of a polyunsaturated lipid bilayer. J Phys Chem B 107(51):14500–14508

    Article  Google Scholar 

  • Li XJ, Pivkin IV, Liang HJ, Karniadakis GE (2009) Shape transformations of membrane vesicles from amphiphilic triblock copolymers: a dissipative particle dynamics simulation study. Macromolecules 42(8):3195–3200

    Article  Google Scholar 

  • Lin S, Shih CJ, Strano MS, Blankschtein D (2011) Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions. J Am Chem Soc 133(32):12810–12823

    Article  Google Scholar 

  • Lum K, Chandler D, Weeks JD (1999) Hydrophobicity at small and large length scales. J Phys Chem B 103(22):4570–4577

    Article  Google Scholar 

  • Maddox MW, Gubbins KE (1997) A molecular simulation study of freezing/melting phenomena for Lennard-Jones methane in cylindrical nanoscale pores. J Chem Phys 107(22):9659–9667

    Article  Google Scholar 

  • Maniwa Y, Kataura H, Abe M, Udaka A, Suzuki S, Achiba Y, Kira H, Matsuda K, Kadowaki H, Okabe Y (2005) Ordered water inside carbon nanotubes: formation of pentagonal to octagonal ice-nanotubes. Chem Phys Lett 401(4–6):534–538

    Article  Google Scholar 

  • Mathivet L, Cribier S, Devaux PF (1996) Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. Biophys J 70(3):1112–1121

    Article  Google Scholar 

  • Meyer F, Smit B (2009) Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci USA 106(10):3654–3658

    Article  Google Scholar 

  • Meyer EE, Rosenberg KJ, Israelachvili J (2006) Recent progress in understanding hydrophobic interactions. Proc Natl Acad Sci USA 103(43):15739–15746

    Article  Google Scholar 

  • Meyer F, Benjamini A, Rodgers JM, Misteli Y, Smit B (2010) Molecular simulation of DMPC-cholesterol phase diagram. J Phys Chem B 114(32):10451–10461

    Article  Google Scholar 

  • Nakamura H, Tamura Y (2005) Phase diagram for self-assembly of amphiphilic molecule C12E6 by dissipative particle dynamics simulation. Comput Phys Commun 169(1–3):139–143

    Article  Google Scholar 

  • Nyström JH, Lönnfors M, Nyholm TKM (2010) Transmembrane peptides influence the affinity of sterols for phospholipid bilayers. Biophys J 99(2):526–533

    Article  Google Scholar 

  • Özen AS, Sen U, Atilgan C (2006) Complete mapping of the morphologies of some linear and graft fluorinated co-oligomers in an aprotic solvent by dissipative particle dynamics. J Chem Phys 124(6):064905

    Article  Google Scholar 

  • Powell MR, Cleary L, Davenport M, Shea KJ, Siwy ZS (2011) Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat Nanotechnol 6(12):798–802

    Article  Google Scholar 

  • Rijcken CJ, Snel CJ, Schiffelers RM, van Nostrum CF, Hennink WE (2007) Hydrolysable core-crosslinked thermosensitive polymeric micelles: synthesis, characterisation and in vivo studies. Biomaterials 28(36):5581–5593

    Article  Google Scholar 

  • Ryjkina E, Kuhn H, Rehage H, Muller F, Peggau J (2002) Molecular dynamic computer simulations of phase behavior of non-ionic surfactants. Angew Chem Int Ed 41(6):983–986

    Article  Google Scholar 

  • Rzayev J, Hillmyer MA (2005) Nanochannel array plastics with tailored surface chemistry. J Am Chem Soc 127(38):13373–13379

    Article  Google Scholar 

  • Shapiro RA, Brindley AJ, Martin RW (2010) Thermal stabilization of DMPC/DHPC bicelles by addition of cholesterol sulfate. J Am Chem Soc 132(33):11406–11407

    Article  Google Scholar 

  • Shikata T, Hirata H, Kotaka T (1987) Micelle formation of detergent molecules in aqueous media. Viscoelastic properties of aqueous cetyltrimethylammonium bromide-salicylic acid solutions. Langmuir 3(6):1081–1086

    Article  Google Scholar 

  • Shikata T, Hirata H, Kotaka T (1989) Micelle formation of detergent molecules in aqueous media. 3. Viscoelastic properties of aqueous cetyltrimethylammonium bromide-salicylic acid solutions. Langmuir 5(2):398–405

    Article  Google Scholar 

  • Shillcock JC, Lipowsky R (2002) Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J Chem Phys 117(10):5048–5061

    Article  Google Scholar 

  • Shillcock JC, Lipowsky R (2005) Tension-induced fusion of bilayer membranes and vesicles. Nat Mater 4(3):225–228

    Article  Google Scholar 

  • Strekalova EG, Mazza MG, Stanley HE, Franzese G (2011) Large decrease of fluctuations for supercooled water in hydrophobic nanoconfinement. Phys Rev Lett 106(14):145701

    Article  Google Scholar 

  • Yamamoto S, Hyodo S (2005) Mesoscopic simulation of the crossing dynamics at an entanglement point of surfactant threadlike micelles. J Chem Phys 122(20):204907

    Article  Google Scholar 

  • Yang H, Coombs N, Ozin GA (1997) Morphogenesis of shapes and surface patterns in mesoporous silica. Nature 386(6626):692–695

    Article  Google Scholar 

  • Yoon DK, Deb R, Chen D, Korblova E, Shao R, Ishikawa K, Rao NVS, Walba DM, Smalyukh II, Clark NA (2010) Organization of the polarization splay modulated smectic liquid crystal phase by topographic confinement. Proc Natl Acad Sci USA 107(50):21311–21315

    Article  Google Scholar 

Download references

Acknowledgments

N.A. and K.Y. were supported by the Core Research for Evolution Science and Technology (CREST) of the Japan Science and Technology Corporation (JST). XCZ was supported by grants from the NSF (CBET-1036171 and CBET-1066947) and ARL (W911NF1020099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyoshi Arai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arai, N., Yasuoka, K. & Zeng, X.C. Phase diagrams of confined solutions of dimyristoylphosphatidylcholine (DMPC) lipid and cholesterol in nanotubes. Microfluid Nanofluid 14, 995–1010 (2013). https://doi.org/10.1007/s10404-012-1107-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-1107-3

Keywords

Navigation