Skip to main content
Log in

From dissipative particle dynamics scales to physical scales: a coarse-graining study for water flow in microchannel

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In the present work, dissipative particle dynamics (DPD) simulation of simple flows is studied based on coarse-graining parameter. Reference scales of DPD are expressed in terms of physical units and DPD parameters and equations are expressed in terms of Reynolds number and apparent Peclet number. DPD parameters for a given coarse-graining are calculated by matching the density and viscosity of water and Reynolds number of the flow. The formulation is applied to water flow in microchannels of height 5 and 10 μm and tested for a wide range of coarse-graining parameter varying from 107 to 109. The results are in a good agreement with the continuum formulation and simulated the correct hydrodynamics of water flow in microchannels. By inspecting the microscopic detail of the interaction between the DPD particles, it is found that diffusivity is low for high coarse-graining parameter, which results in higher values of Schmidt number. Parameters are tested within the continuum assumption. It is shown that correct Schmidt number can be achieved using small coarse-graining parameter. Also, it is observed that low diffusivity or high Schmidt number does not affect the hydrodynamics of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

D :

Diffusivity

D h :

Hydraulic diameter

f :

Force

H :

Height of the channel

k B :

Boltzmann constant

L :

Length of the channel

m DPD :

Mass of a DPD particle

n :

DPD number density

M y :

Number of cells in y-direction

N DPD :

Total number of DPD particles

N m :

Coarse-graining parameter

N x :

Number of cells in x-direction

Pe* :

Apparent Peclet number

Re :

Reynolds number

Re cell :

Reynolds number based on cutoff length

r :

Distance

r c :

Cut-off radius

Sc :

Schmidt number

T :

Temperature

t :

Time

u avg :

Average velocity of the flow

u T :

Thermal velocity of the particle

v :

Velocity

α:

Repulsive force parameter

γ:

Dissipative force parameter

μ :

Dynamic viscosity

σ:

Random force parameter

ζ :

Random number

ρ DPD :

Number of DPD Particles in a unit cell

τ w :

Shear stress at the wall

ν :

Kinematic viscosity

ω C, ω D, ω R :

Weight functions

References

  • Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Clarendon Press, Oxford

    Google Scholar 

  • Backer JA, Lowe CP, Hoefsloot HCJ, Iedema PD (2005) Poiseuille flow to measure the viscosity of particle model fluids. J Chem Phys 122:154503

    Article  Google Scholar 

  • Boek ES, Coveney PV, Lekkerkerker HNW, Schoot PVD (1997) Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics. Phys Rev E 55(3):3124–3133

    Article  Google Scholar 

  • Español P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30(4):191–196

    Article  Google Scholar 

  • Fan XJ, Nhan PT, Ng TY, Wu XH, Xu D (2003) Microchannel flow of a macromolecular suspension. Phys Fluids 15(1):11–21

    Article  Google Scholar 

  • Flekkøy EG, Coveney PV, Fabritiis GD (2000) Foundation of dissipative particle dynamics. Phys Rev E 62(2):2140–2157

    Article  Google Scholar 

  • Groot RD, Rabone KL (2001) Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys J 81:725–736

    Article  Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomic and mesoscopic simulation. J Chem Phys 107(11):4423–4435

    Article  Google Scholar 

  • Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160

    Article  Google Scholar 

  • Jiang W, Huang J, Wang Y, Laradji M (2007) Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics. J Chem Phys 126:044901

    Article  Google Scholar 

  • Keaveny EE, Pivkin IV, Maxey M, Karniadakis GE (2005) A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows. J Chem Phys 123:104107

    Article  Google Scholar 

  • Kim JM, Phillips RJ (2004) Dissipative particle dynamics simulation of flow around spheres and cylinders at finite Reynolds numbers. Chem Eng Sci 59:4155–4168

    Google Scholar 

  • Koelman JMVA, Hoogerbrugge PJ (1993) Dynamic simulation of hard-sphere suspensions under steady shear. Europhys Lett 21(3):363–368

    Article  Google Scholar 

  • Liu M, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of multiphase fluid flow in microchannels and microchannel networks. Phys Fluids 19:033302

    Article  Google Scholar 

  • Lowe CP (1999) An alternative approach to dissipative particle dynamics. Europhys Lett 47:145

    Article  Google Scholar 

  • Marsh CA (1998) Theoretical aspect of dissipative particle dynamics. Ph.D. thesis, University of Oxford

  • Marsh CA, Backx G, Ernst M (1997) Static and dynamic properties of dissipative particle dynamics. Phys Rev E 55(2):1676–1691

    Article  Google Scholar 

  • Nikunen P, Karttunen M, Vattulainen I (2003) How would you integrate the equations of motion in dissipative particle dynamic simulations? Comput Phys Commun 153:407–423

    Article  Google Scholar 

  • Peters EAJF (2004) Elimination of time step effects in DPD. Europhys lett 66:311–317

    Article  Google Scholar 

  • Pivkin IV, Karniadakis GE (2005) A new method to impose no-slip boundary conditions in dissipative particle dynamics. J Comp phys 207:114–128

    Article  MATH  MathSciNet  Google Scholar 

  • Pivkin IV, Karniadakis GE (2006) Controlling density fluctuations in wall bounded dissipative particle dynamics Systems. Phys Rev Lett 96:206001

    Article  Google Scholar 

  • Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Revenga M, Zuñiga I, Español P (1999) Boundary conditions in dissipative particle dynamics. Comput Phys Commun 121–122:309–311

    Article  Google Scholar 

  • Symeonidis V, Karniadakis GE, Caswell B (2006) Schmidt number effects in dissipative particle dynamics simulation of polymers. J Chem Phys 125:184902

    Article  Google Scholar 

  • Symeonidis V, Karniadakis GE, Caswell B (2005) Dissipative particle dynamics simulations of polymer chains: scaling laws and shearing response compared to DNA experiments. Phys Rev Lett 95:076001

    Article  Google Scholar 

  • Visser DC, Hoefsloot HCJ, Iedema PD (2006) Modelling multi-viscosity systems with dissipative particle dynamics. J Comp Phys 214:491–504

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation grant (NSF-OISE-0530203). The third author would like to thank Arab Fund Fellowship Program for supporting his research stay at URI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Asako, Y., Abu-Nada, E. et al. From dissipative particle dynamics scales to physical scales: a coarse-graining study for water flow in microchannel. Microfluid Nanofluid 7, 467 (2009). https://doi.org/10.1007/s10404-008-0398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-008-0398-x

Keywords

Navigation