Skip to main content
Log in

Simulations of extensional flow in microrheometric devices

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alves MA, Pinho FT, Oliveira PJ (2000) Effect of a high-resolution differencing scheme on finite-volume predictions of viscoelastic flows. J Non-Newt Fluid Mech 93:287–314

    Article  MATH  Google Scholar 

  • Alves MA, Oliveira PJ, Pinho FT (2003) A convergent and universally bounded interpolation scheme for the treatment of advection. Int J Num Meth Fluids 41:47–75

    Article  MATH  Google Scholar 

  • Alves MA, Oliveira PJ, Pinho FT (2004) On the effect of contraction ratio in viscoelastic flow through abrupt contractions. J Non-Newt Fluid Mech 122:117–130

    Article  MATH  Google Scholar 

  • Alves MA, Pinho FT, Oliveira PJ (2005) Visualizations of Boger fluid flows in a 4:1 square–square contraction. AIChE J 51:2908–2922

    Article  Google Scholar 

  • Alves MA, Poole RJ (2007) Divergent flow in contractions. J Non-Newt Fluid Mech 144:141–148

    Article  Google Scholar 

  • Bagley EB (1957) End corrections in the capillary flow of polyethylene. J Appl Phys 28:624–627

    Article  Google Scholar 

  • Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier: Distributors for the U.S. and Canada, Elsevier Science Pub. Co., Amsterdam, New York

  • Barrat JL, Bocquet L (1999) Large slip effect at a nonwetting fluid-solid interface. Phys Rev Lett 82:4671–4674

    Article  Google Scholar 

  • Battaglia F, Tavener SJ, Kulkarni AK, Merkle CL (1997) Bifurcation of low Reynolds number flows in symmetric channels. AIAA J 35:99–105

    Article  MATH  Google Scholar 

  • Bayraktar T, Pidugu SB (2006) Characterization of liquid flows in microfluidic systems. Int J Heat Mass Transf 49:815–824

    Article  Google Scholar 

  • Binding DM (1988) An approximate analysis for contraction and converging flows. J Non-Newt Fluid Mech 27:173–189

    Article  MATH  Google Scholar 

  • Binding DM, Couch MA, Walters K (1998) The pressure dependence of the shear and elongational properties of polymer melts. J Non-Newt Fluid Mech 79:137–155

    Article  Google Scholar 

  • Boger DV (1982) Circular entry flows of inelastic and viscoelastic fluids. In: Mujumdar AS, Mashelkar RA (eds) Advances of transport processes, vol 2. Wiley Eastern, New Delhi, pp 43–98

  • Boger DV (1987) Viscoelastic flows through contractions. Annu Rev Fluid Mech 19:157–182

    Article  Google Scholar 

  • Boger DV, Binnington RJ (1990) Circular entry flows of fluid M1. J Non-Newt Fluid Mech 35:339–360

    Article  Google Scholar 

  • Brown RA, McKinley GH (1994) Report on the VIIIth Int. workshop on numerical methods in viscoelastic flows. J Non-Newt Fluid Mech 52:407–413

    Article  Google Scholar 

  • Cherdron W, Durst F, Whitelaw JH (1978) Asymmetric flows and instabilities in symmetric ducts with sudden expansions. J Fluid Mech 84:13–31

    Article  Google Scholar 

  • Chiang TP, Sheu TWH, Wang SK (2000) Side wall effects on the structure of laminar flow over a plane-symmetric sudden expansion. Comp Fluids 29:467–492

    Article  Google Scholar 

  • Cogswell FN (1972a) Converging flow of polymer melts in extrusion dies. Polymer Eng Sci 12:64–73

    Article  Google Scholar 

  • Cogswell FN (1972b) Measuring extensional rheology of polymer melts. Trans Soc Rheol 16:383–403

    Article  Google Scholar 

  • Drikakis D (1997) Bifurcation phenomena in incompressible sudden expansion flows. Phys Fluids 9:76–87

    Article  Google Scholar 

  • Durst F, Melling A, Whitelaw JH (1974) Low Reynolds-number flow over a plane symmetric sudden expansion. J Fluid Mech 64:111–128

    Article  Google Scholar 

  • Fearn RM, Mullin T, Cliffe KA (1990) Nonlinear flow phenomena in a symmetric sudden expansion. J Fluid Mech 211:595–608

    Article  Google Scholar 

  • Gad-el-Hak M (2002) The MEMS handbook. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Hassager O (1988) Working group on numerical techniques (Vth workshop on numerical methods in non-Newtonian flow). J Non-Newt Fluid Mech 29:2–5

    Article  Google Scholar 

  • Hawa T, Rusak Z (2001) The dynamics of a laminar flow in a symmetric channel with a sudden expansion. J Fluid Mech 436:283–320

    Article  MATH  MathSciNet  Google Scholar 

  • James DF, Chandler GM, Armour SJ (1990) A converging channel rheometer for the measurement of extensional viscosity. J Non-Newt Fluid Mech 35:421–443

    Article  Google Scholar 

  • Kang K, Lee LJ, Koelling KW (2005) High shear microfluidics and its application in rheological measurement. Exp Fluids 38: 222–232

    Article  Google Scholar 

  • Kang K, Koelling KW, Lee LJ (2006) Microdevice end pressure evaluations with Bagley correction. Microfluid Nanofluid 2:223–235

    Article  Google Scholar 

  • Karniadakis G, Beskok A, Aluru NR (2005) Microflows and nanoflows: fundamentals and simulation. Springer, New York

    MATH  Google Scholar 

  • Kim S, Dealy JM (2001) Design of an orifice die to measure entrance pressure drop. J Rheol 45:1413–1419

    Article  Google Scholar 

  • Lauga E, Stroock AD, Stone HA (2004) Three-dimensional flows in slowly varying planar geometries. Phys Fluids 16:3051–3062

    Article  MathSciNet  Google Scholar 

  • Lee WY, Wong M, Zohar Y (2002) Microchannels in series connected via a contraction/expansion section. J Fluid Mech 459:187–206

    Article  MATH  Google Scholar 

  • Leonard BP (1979) Stable and accurate convective modeling procedure based on quadratic upstream interpolation. Comp Meth Appl Mech Eng 19:59–98

    Article  MATH  Google Scholar 

  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40

    Article  Google Scholar 

  • Mishra S, Jayaraman K (2002) Asymmetric flows in planar symmetric channels with large expansion ratio. Int J Num Meth Fluids 38:945–962

    Article  MATH  Google Scholar 

  • Mitsoulis E, Hatzikiriakos SG, Christodoulou K, Vlassopoulos D (1998) Sensitivity analysis of the Bagley correction to shear and extensional rheology. Rheol Acta 37:438–448

    Article  Google Scholar 

  • Moffatt HK (1964) Viscous and resistive eddies near a sharp corner. J Fluid Mech 18:1–18

    Article  MATH  Google Scholar 

  • Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859–2897

    Article  Google Scholar 

  • Oliveira MSN, Alves MA, McKinley GH, Pinho FT (2007a) Viscous flow through microfabricated hyperbolic contractions. Exp Fluids 43:437–451

    Article  Google Scholar 

  • Oliveira MSN, Oliveira PJ, Pinho FT, Alves MA (2007b) Effect of contraction ratio upon viscoelastic flow in contractions: the axisymmetric case. J Non-Newt Fluid Mech 147:92–108

    Article  Google Scholar 

  • Oliveira MSN, Yeh R, McKinley GH (2006) Iterated stretching, extensional rheology and formation of beads-on-a-string structures in polymer solutions. J Non-Newt Fluid Mech 137:137–148

    Article  Google Scholar 

  • Oliveira PJ (2003) Asymmetric flows of viscoelastic fluids in symmetric planar expansion geometries. J Non-Newt Fluid Mech 114:33–63

    Article  MATH  Google Scholar 

  • Oliveira PJ, Pinho FT (1999) Numerical procedure for the computation of fluid flow with arbitrary stress-strain relationships. Num Heat Transf B 35:295–315

    Article  Google Scholar 

  • Oliveira PJ, Pinho FT, Pinto GA (1998) Numerical simulation of non-linear elastic flows with a general collocated finite-volume method. J Non-Newt Fluid Mech 79:1–43

    Article  MATH  Google Scholar 

  • Owens RG, Phillips NT (2002) Computational rheology. Imperial College Press, London

    MATH  Google Scholar 

  • Pit R, Hervet H, Leger L (2000) Direct experimental evidence of slip in hexadecane: solid interfaces. Phys Rev Lett 85:980–983

    Article  Google Scholar 

  • Revuelta A (2005) On the two-dimensional flow in a sudden expansion with large expansion ratios. Phys Fluids 17:028102 1–4

    Article  Google Scholar 

  • Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH (2005) The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries. J Non-Newt Fluid Mech 129:1–22

    Article  Google Scholar 

  • Rothstein JP, McKinley GH (2001) The axisymmetric contraction–expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop. J Non-Newt Fluid Mech 98:33–63

    Article  MATH  Google Scholar 

  • Shapira M, Degani D, Weihs D (1990) Stability and existence of multiple solutions for viscous-flow in suddenly enlarged channels. Comp Fluids 18:239–258

    Article  MATH  Google Scholar 

  • Sobey IJ, Drazin PG (1986) Bifurcations of two-dimensional channel flows. J Fluid Mech 171:263–287

    Article  MATH  MathSciNet  Google Scholar 

  • Townsend P, Walters K (1994) Expansion flows of non-Newtonian liquids. Chem Eng Sci 49:749–763

    Google Scholar 

  • Tsai C-H, Chen H-T, Wang Y-N, Lin C-H, Fu L-M (2006) Capabilities and limitations of 2-dimensional and 3-dimensional numerical methods in modeling the fluid flow in sudden expansion microchannels. Microfluid Nanofluid 3:13–18

    Article  Google Scholar 

  • Tuladhar TR, Mackley MR (2008) Filament stretching rheometry and break-up behaviour of low viscosity polymer solutions and inkjet fluids. J Non-Newt Fluid Mech 148:97–108. doi:10.1016/j.jnnfm.2007.04.015

    Article  MATH  Google Scholar 

  • Wereley ST, Meinhart CD (2004) Micron-resolution particle image velocimetry. In: Breuer KS (ed) Microscale diagnostic techniques. Springer, Berlin

    Google Scholar 

  • White SA, Gotsis AD, Baird DG (1987) Review of the entry flow problem—experimental and numerical. J Non-Newt Fluid Mech 24:121–160

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Whitesides GM, Stroock AD (2001) Flexible methods for microfluidics. Phys Today 54:42–48

    Article  Google Scholar 

  • Wille R, Fernholz H (1965) Report on first European mechanics colloquium on Coanda effect. J Fluid Mech 23:801–819

    Article  Google Scholar 

Download references

Acknowledgement

M. S. N. Oliveira would like to thank Fundação para a Ciência e a Tecnologia (FCT), Portugal, for financial support (SFRH/BPD/15005/2004, SFRH/BPD/34141/2006). M. S. N. Oliveira and M. A. Alves acknowledge the financial support provided by FCT and FEDER under program POCI 2010 (projects PPTDC/EME/59338/2004 and POCI/EQU/59256/2004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Alves.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 417 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, M.S.N., Rodd, L.E., McKinley, G.H. et al. Simulations of extensional flow in microrheometric devices. Microfluid Nanofluid 5, 809–826 (2008). https://doi.org/10.1007/s10404-008-0277-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-008-0277-5

Keywords

Navigation