Skip to main content
Log in

Development and Validation of a Green Capillary Electrophoretic Method for Determination of Polyphenolic Compounds in Red Wine Samples

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A sensitive, simple, rapid, experimentally convenient, cost-effective, environmentally friendly and high-throughput green chemistry by capillary electrophoresis (CE) approach for the determination of eight polyphenolics frequently found in red wines from USA was carried without using toxic organic modifier. Several parameters which affect the separation were investigated to determine the optimum conditions. At room temperature, the eight polyphenolics could be well separated within 15 min in a 55-cm length capillary at a separation voltage of 26 kV with 40-mM borate buffer (pH 8.9). The method was fully validated showing satisfactory data for all method validation parameters tested. The limits of detection varied from 0.15 to 0.32 µM. The relative standard deviations of migration varied from 0.208 to 0.630 %. The Californian red wine samples analyzed were bought in the local markets, and the polyphenolic compound recoveries were in the range of 98–99.7 %. The method was successfully applied to the determination of the studied polyphenolics in red wine samples with satisfactory recoveries. Catechin, syringic acid, apigenin, myricetin, luteolin, quercetin, caffeic acid, and gallic acid were detected in all samples, with gallic acid and myricetin occurring in the highest concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Koel M, Kaljurand M (2006) Pure Appl Chem 78:1993–2002

    Article  CAS  Google Scholar 

  2. Anastas PT (1999) Crit Rev Anal Chem 29:167–175

    Article  CAS  Google Scholar 

  3. Armenta S, Garrigues S, De La Guardia M (2008) Trac-Trend Anal Chem 27:497–511

    Article  CAS  Google Scholar 

  4. Kirchhoff MM (2005) Resour Conserv Recycl 44:237–243

    Article  Google Scholar 

  5. Warner JC, Cannon AS, Dye KM (2004) Environ Impact Asses 24:775–799

    Article  Google Scholar 

  6. Cielecka-Piontek J, Zalewski P, Jelińska A, Garbacki P (2013) Chromatographia 76:1429–1437

    Article  CAS  Google Scholar 

  7. King RE, Bomser JA, Min DB (2006) Compr Rev Food Sci Food Saf 5:65–70

    Article  CAS  Google Scholar 

  8. Seruga M, Novak I, Jakobek L (2011) Food Chem 124:1208–1216

    Article  CAS  Google Scholar 

  9. Ahuja S, Jimidar MI (2008) Capillary electrophoresis methods for pharmaceutical analysis, vol 9. Elsevier Inc., New York

    Book  Google Scholar 

  10. Sadecka J, Polonsky J (2000) J Chromatogr A 880:243–279

    Article  CAS  Google Scholar 

  11. Simo C, Barbas C, Cifuentes A (2005) Electrophoresis 26:1306–1318

    Article  CAS  Google Scholar 

  12. Cifuentes A (2006) Electrophoresis 27:283–303

    Article  CAS  Google Scholar 

  13. Garcia-Canas V, Cifuentes A (2008) Electrophoresis 29:294–309

    Article  CAS  Google Scholar 

  14. Gu X, Chu Q, O’Dwyer M, Zeece M (2000) J Chromatogr A 881:471–481

    Article  CAS  Google Scholar 

  15. Pazourek J, Gonzalez G, Revilla AL, Havel J (2000) J Chromatogr A 874:111–119

    Article  CAS  Google Scholar 

  16. Garcia-Viguera C, Bridle P (1995) Food Chem 54:349–352

    Article  CAS  Google Scholar 

  17. Arce L, Tena MT, Rios A, Valcarcel M (1998) Anal Chim Acta 359:27–38

    Article  CAS  Google Scholar 

  18. Minussi RC, Rossi M, Bologna L, Cordi L, Rotilio D, Pastore GM, Duran N (2003) Food Chem 82:409–416

    Article  CAS  Google Scholar 

  19. Andrade PB, Oliveira BM, Seabra RM, Ferreira MA, Ferreres F, Garcia-Viguera C (2001) Electrophoresis 22:1568–1572

    Article  CAS  Google Scholar 

  20. Peng Y, Chu Q, Liu F, Ye J (2004) J Agric Food Chem 52:153–156

    Article  CAS  Google Scholar 

  21. Wang SP, Huang KJ (2004) J Chromatogr A 1032:273–279

    Article  CAS  Google Scholar 

  22. de Souza Dias F, Klassen A, Maggi Tavares MF, David JM (2013) Chromatographia 76:559–563

    Article  Google Scholar 

  23. Tungjai M, Poompimon W, Loetchutinat C, Kothan S, Dechsupa N, Mankhetkorn S (2008) TODDJ 2:10–19

    Article  CAS  Google Scholar 

  24. Ramesova S, Sokolova R, Degano I, Bulickova J, Zabka J, Gal M (2012) Anal Bioanal Chem 402:975–982

    Article  CAS  Google Scholar 

  25. Arrington ME (2010) Superoxide dismutase inhibitor screening and characterization using 19F NMR. Thesis, Department of Chemistry and Physics, Western Carolina University. http://libres.uncg.edu/ir/wcu/f/Arrington2010.pdf

  26. Erdemgil FZ, Sanli S, Sanli N, Ozkan G, Barbosa J, Guiteras J, Beltran JL (2007) Talanta 72:489–496

    Article  CAS  Google Scholar 

  27. Bald E, Kubalczyk P (2013) In: Buszewski B, Dziubakiewicz E, Szumski M (eds) Electromigration techniques. Springer, Berlin/Heidelberg, pp 77–92

  28. Hoffstetter-Kuhn S, Paulus A, Gassmann E, Michael H (1991) Anal Chem 63:1541–1546

    Article  CAS  Google Scholar 

  29. ICH Guideline Q2 (R1)(2005) Validation of analytical procedures: text and methodology. November

  30. Riley CM, Rosanske TW (1996) Development and validation of analytical methods. Elsevier, New York

    Google Scholar 

  31. Swartz ME, Krull IS (1997) Analytical method development and validation. Marcel Dekker Inc., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel A. Ozkan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This paper is dedicated to the memory of our wonderful colleague, Dr. Craig Lunte, who recently passed away.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şanli, S., Şanli, N., Ozkan, S.A. et al. Development and Validation of a Green Capillary Electrophoretic Method for Determination of Polyphenolic Compounds in Red Wine Samples. Chromatographia 79, 1351–1358 (2016). https://doi.org/10.1007/s10337-016-3147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3147-4

Keywords

Navigation