Skip to main content
Log in

Applications of Poly(Ethylene)Glycol (PEG) in Separation Science

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The wide range of applications of poly(ethylene)glycol (PEG) in primarily chromatography and other closely related analytical methods has been reviewed. PEG has been used as mobile phase modifier in capillary electrophoresis (CE) as well as ion exchange, size exclusion, and hydrophobic interaction liquid chromatography (LC) methods. Generally in the presence of PEG, LC retention of macromolecules is altered and stability of their structure is maintained. PEG was effective in CE as a permanent coating for fused silica capillaries to shield free silanol groups that can cause protein adsorption to the wall resulting in band broadening and low recovery of the separated proteins. In gas chromatography, PEG-based stationary phases were applied for separation of polar analytes. PEG could also serve as an extraction medium in solid phase microextraction and aqueous two phase systems. Selected analytical applications, primarily LC and CE, involving PEG to facilitate the determination of either small molecules or macromolecules such as proteins in their native form are discussed and representative figures provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chen J, Spear SK, Huddlestona JG, Rogers RD (2005) Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem 7:64–82

    Article  CAS  Google Scholar 

  2. Spietelun A, Pilarczyk M, Kloskowski A, Namieśnik J (2011) Polyethylene glycol-coated solid-phase microextraction fibres for the extraction of polar analytes—a review. Talanta 87:1–7

    Article  CAS  Google Scholar 

  3. Dai Q, Walkey C, Chan WCW (2014) Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew Chem Int Ed Engl 53:5093–5096

    Article  CAS  Google Scholar 

  4. Kianpour E, Azizian S (2014) Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions. Fuel 137:36–40

    Article  CAS  Google Scholar 

  5. Cruje C, Chithrani DB (2014) Polyethylene glycol functionalized nanoparticles for improved cancer treatment. Rev Nanosci Nanotechnol 3:20–30

    Article  CAS  Google Scholar 

  6. Minordi LM, Vecchioli A, Mirk P, Bonomo L (2011) CT enterography with polyethylene glycol solution vs CT enteroclysis in small bowel disease. Br J Radiol 84:112–119

    Article  CAS  Google Scholar 

  7. McDonnell T, Ioannou Y, Rahman A (2014) A PEGylated drugs in rheumatology—why develop them and do they work? Rheumatology 53:391–396

    Article  CAS  Google Scholar 

  8. Benincasa M, Zahariev S, Pelillo C, Milan A, Gennaro R, Scocchi M (2015) PEGylation of the peptide Bac7(1–35) reduces renal clearance while retaining antibacterial activity and bacterial cell penetration capacity. Eur J Med Chem 95:210–219

    Article  CAS  Google Scholar 

  9. Baumann A, Tuerck D, Prabhu S, Dickmann L, Sims J (2014) Pharmacokinetics, metabolism and distribution of PEGs and PEGylated proteins: quo vadis? Drug Discov Today 19:1623–1631

    Article  CAS  Google Scholar 

  10. Giorgi ME, Agusti R, de Lederkremer RM (2014) Carbohydrate PEGylation, an approach to improve pharmacological potency. Beilstein J Org Chem 10:1433–1444

    Article  CAS  Google Scholar 

  11. Ikeda Y, Nagasaki Y (2014) Impacts of PEGylation on the gene and oligonucleotide delivery system. J Appl Polym Sci 131:106–115

    Article  CAS  Google Scholar 

  12. Bekkara-Aounallah F, Ambike A, Gref R, Couvreur P, Rosilio V (2014) Interfacial behavior of PEGylated lipids and their effect on the stability of squalenoyl-drug nanoassemblies. Int J Pharm 471:75–82

    Article  CAS  Google Scholar 

  13. Wolfram J, Suri K, Yang Y, Shen J, Celia C, Fresta M, Zhao Y, Shen H, Ferrari M (2014) Shrinkage of pegylated and non-pegylated liposomes in serum. Colloids Surf B Biointerfaces 114:294–300

    Article  CAS  Google Scholar 

  14. Mironi-Harpaz I, Berdichevski A, Seliktar D (2014) Fabrication of PEGylated fibrinogen: a versatile injectable hydrogel biomaterial. Methods Mol Biol 1181:61–68

    Article  Google Scholar 

  15. Kolate A, Baradia D, Patil S, Vhora I, Kore G, Misra A (2014) PEG—a versatile conjugating ligand for drugs and drug delivery systems. J Control Release 192:67–81

    Article  CAS  Google Scholar 

  16. Kaialy W, Larhrib H, Chikwanha B, Shojaee S, Nokhodchi A (2014) An approach to engineer paracetamol crystals by antisolvent crystallization technique in presence of various additives for direct compression. Int J Pharm 464:53–64

    Article  CAS  Google Scholar 

  17. Abidi FE, Bishayee S, Bachhawat BK, Bhadra R (1987) Lectin-binding assay by polyethylene glycol 8000. Anal Biochem 166:257–266

    Article  CAS  Google Scholar 

  18. Heidari Y, Koorepazan Moftakhar M, Zamani A, Yaftian MR (2015) Effect of polyethylene glycols dissolved in aqueous phase on the extraction–separation of La(III), Eu(III) and Er(III) ions with bis(2-ethylhexyl)phosphoric acid. Anal Bioanal Chem Res 2:22–30

    Google Scholar 

  19. Šatínský D, Brabcová I, Maroušková A, Chocholouš P, Solich P (2013) Green chromatography separation of analytes of greatly differing properties using a polyethylene glycol stationary phase and a low-toxic water-based mobile phase. Anal Bioanal Chem 405:6105–6115

    Article  CAS  Google Scholar 

  20. Jandera P (2011) Stationary and mobile phases in hydrophilic interaction chromatography: a review. Anal Chim Acta 692:1–25

    Article  CAS  Google Scholar 

  21. Gavira JA, Cera-Manjarres A, Ortiz K, Mendez J, Jimenez-Torres JA, Patiño-Lopez LD, Torres-Lugo M (2014) Use of cross-linked poly(ethylene glycol)-based hydrogels for protein crystallization. Cryst Growth Des 14:3239–3248

    Article  CAS  Google Scholar 

  22. Arrua RD, Talebi M, Causon TJ, Hilder EF (2012) Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Anal Chim Acta 738:1–12

    Article  CAS  Google Scholar 

  23. Zeng C, Huang M, Zhao H, Zhou J, Li J (2012) Solution and diffusion properties of cyclohexane, cyclohexanol, and cyclohexanone in poly(ethylene glycol) by inverse gas chromatography. J Appl Polym Sci 123:124–134

    Article  CAS  Google Scholar 

  24. Schulze M, Belder D (2012) Poly(ethylene glycol)-coated microfluidic devices for chip electrophoresis. Electrophoresis 33:370–378

    Article  CAS  Google Scholar 

  25. Wadhwa SK, Tuzen M, Kazi TG, Soylak M, Hazer B (2014) Polyhydroxybutyrate-b-polyethyleneglycol block copolymer for the solid phase extraction of lead and copper in water, baby foods, tea and coffee samples. Food Chem 152:75–80

    Article  CAS  Google Scholar 

  26. Liu Y, Wu Z, Zhang Y, Yuan H (2012) Partitioning of biomolecules in aqueous two-phase systems of polyethylene glycol and nonionic surfactant. Biochem Eng J 69:93–99

    Article  CAS  Google Scholar 

  27. Bruin GJM, Chang JP, Kuhlman RH, Zegers K, Kraak JC, Poppe H (1989) Capillary zone electrophoretic separations of proteins in polyethylene glycol-modified capillaries. J Chromatogr A 471:429–436

    Article  CAS  Google Scholar 

  28. Lux JA, Yin H, Schomburg G (1990) Influence of polymer coating of capillary surfaces on migration behavior in micellar electrokinetic capillary chromatography. J High Resolut Chromatogr 13:145–147

    Article  CAS  Google Scholar 

  29. Nashabeh W, El Rassi Z (1991) Capillary zone electrophoresis of proteins with hydrophilic fused-silica capillaries. J Chromatogr A 559:367–383

    Article  CAS  Google Scholar 

  30. Ng CL, Lee HK, Li SFY (1994) Prevention of protein adsorption on surfaces by polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymers in capillary electrophoresis. J Chromatogr A 659:427–434

    Article  CAS  Google Scholar 

  31. Jorgenson JW (1984) Zone electrophoresis in open-tubular capillaries. TrAC Trends Anal Chem 3:51–54

    Article  CAS  Google Scholar 

  32. Guttman A, Horvath J, Cooke N (1993) Influence of temperature on the sieving effect of different polymer matrices in capillary SDS gel electrophoresis of proteins. Anal Chem 65:199–203

    Article  CAS  Google Scholar 

  33. Stathakis C, Cassidy RM (1996) Capillary electrophoretic separation of metal ions in the presence of polyethylene glycols. Analyst 121:839

    Article  CAS  Google Scholar 

  34. Mazzeo JR, Krull IS (1991) Capillary isoelectric focusing of proteins in uncoated fused silica capillaries using polymeric additives. Anal Chem 63:2852–2857

    Article  CAS  Google Scholar 

  35. Muijselaar PGHM, Claessens HA, Cramers CA (1995) Parameters controlling the elution window and retention factors in micellar electrokinetic capillary chromatography. J Chromatogr A 696:273–284

    Article  CAS  Google Scholar 

  36. Ito K, Hirokawa T (1996) Separation of alkali and alkaline-earth metal and ammonium cations by capillary electrophoresis using poly(ethylene glycol) and tartaric acid. J Chromatogr A 742:281–288

    Article  CAS  Google Scholar 

  37. Kaniansky D, Zelenský I, Valášková I, Marák J, Zelenská V (1990) Isotachophoretic separation of alkali and alkaline earth metal cations in water—polyethylene glycol mixtures. J Chromatogr A 502:143–153

    Article  CAS  Google Scholar 

  38. Bednář P, Stránský Z, Barták P, Adamovský P (1999) Polyethylene glycol as a separation medium for capillary zone electrophoretic analysis of pyridine derivatives. J Chromatogr A 838:89–99

    Article  Google Scholar 

  39. Weiss J (2008) Ion Chromatography, 2nd edn. Wiley, Weinheim

    Google Scholar 

  40. Lim LW, Rong L, Takeuchi T (2012) Polyoxyethylene as the stationary phase in ion chromatography. Anal Sci 28:205–213

    Article  CAS  Google Scholar 

  41. Milby KH, Ho SV, Henis JMS (1989) Ion-exchange chromatography of proteins. J Chromatogr A 482:133–144

    Article  CAS  Google Scholar 

  42. Gagnon P, Godfrey B, Ladd D (1996) Method for obtaining unique selectivities in ion-exchange chromatography by addition of organic polymers to the mobile phase. J Chromatogr A 743:51–55

    Article  CAS  Google Scholar 

  43. Gagnon P (2008) Improved antibody aggregate removal by hydroxyapatite chromatography in the presence of polyethylene glycol. J Immunol Methods 336:222–228

    Article  CAS  Google Scholar 

  44. Arakawa T, Timasheff SN (1985) Mechanism of polyethylene glycol interaction with proteins. Biochemistry 24:6756–6762

    Article  CAS  Google Scholar 

  45. Lu X, Zhao D, Su Z (2004) Purification of hemoglobin by ion exchange chromatography in flow-through mode with PEG as an escort. Artif Cells Blood Substitutes Biotechnol 32:209–227

    Article  CAS  Google Scholar 

  46. Lu X, Zhao D, Ma G, Su Z (2004) Polyethylene glycol increases purification and recovery, alters retention behavior in flow-through chromatography of hemoglobin. J Chromatogr A 1059:233–237

    Article  CAS  Google Scholar 

  47. Mori S, Barth HG (1999) Size exclusion chromatography. Springer, New York

    Book  Google Scholar 

  48. Tji TG, Krips HJ, Gelsema WJ, De Ligny CL (1990) Determination of the charge of ions by partition coefficient measurements in gel permeation chromatography. J Chromatogr A 504:403–410

    Article  CAS  Google Scholar 

  49. Marsden NVB (1985) Alkali cation selectivity of sephadex g-25 in water and aqueous mixtures of methanol, ethanol and tert.-butanol. J Chromatogr A 319:247–261

    Article  CAS  Google Scholar 

  50. Okada T (1991) Secondary equilibrium size-exclusion chromatography of ions with polymeric mobile phase additives. J Chromatogr A 586:277–281

    Article  CAS  Google Scholar 

  51. Haymore BL, Lamb JD, Izatt RM, Christensen JJ (1982) Thermodynamic origin of the macrocyclic effect in crown ether complexes of Na+, K+, and Ba2+. Inorg Chem 21:1598–1602

    Article  CAS  Google Scholar 

  52. Vögtle F, Weber E (1979) Multidentate acyclic neutral ligands and their complexation. Angew Chem Int Ed Engl 18:753–776

    Article  Google Scholar 

  53. Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography. John Wiley & Sons, Hoboken

  54. Welte W, Leonhard M, Diederichs K, Weltzien H-U, Restall C, Hall C, Chapman D (1989) Stabilization of detergent-solubilized Ca2+-ATPase by poly(ethylene glycol). Biochim Biophys Acta Biomembr 984:193–199

    Article  CAS  Google Scholar 

  55. De Ligny CL, Gelesma WJ, Roozen AMP (1984) Gel permeation chromatography of proteins in partly aqueous eluents. J Chromatogr A 294:223–233

    Article  Google Scholar 

  56. Visconti A, Pascale M, Centonze G (2000) Determination of ochratoxin A in domestic and imported beers in Italy by immunoaffinity clean-up and liquid chromatography. J Chromatogr A 888:321–326

    Article  CAS  Google Scholar 

  57. Ingham KC (1977) Polyethylene glycol in aqueous solution: solvent perturbation and gel filtration studies. Arch Biochem Biophys 184:59–68

    Article  CAS  Google Scholar 

  58. Hodgson RJ, Plaxton WC (1995) Effect of polyethylene glycol on the activity, intrinsic fluorescence, and oligomeric structure of castor seed cytosolic fructose-1, 6-bisphosphatase. FEBS Lett 368:559–562

    Article  CAS  Google Scholar 

  59. Weaver R, Riley RJ (2006) Identification and reduction of ion suppression effects on pharmacokinetic parameters by polyethylene glycol 400. Rapid Commun Mass Spectrom 20:2559–2564

    Article  CAS  Google Scholar 

  60. Temesi D, Law B, Howe N (2003) Synthesis and evaluation of PEG414, a novel formulating agent that avoids analytical problems associated with polydisperse vehicles such as PEG400. J Pharm Sci 92:2512–2518

    Article  CAS  Google Scholar 

  61. Tong XS, Wang J, Zheng S, Pivnichny JV, Griffin PR, Shen X, Donnelly M, Vakerich K, Nunes C, Fenyk-Melody J (2002) Effect of signal interference from dosing excipients on pharmacokinetic screening of drug candidates by liquid chromatography/mass spectrometry. Anal Chem 74:6305–6313

    Article  CAS  Google Scholar 

  62. Hassl A, Aspöck H (1988) Purification of egg yolk immunoglobulins. J Immunol Methods 110:225–228

    Article  CAS  Google Scholar 

  63. Zhao D-X, Wei X-G, Gu Z-Y, Zhang G-F, Su Z-G (2002) Preparation of bovine lipid-free hemoglobin. Chin J Biotechnol 18:609–613

    CAS  Google Scholar 

  64. Polson A, Coetzer T, Kruger J, von Maltzahn E, van der Merwe KJ (1985) Improvements in the isolation of IgY from the yolks of eggs laid by immunized hens. Immunol Invest 14:323–327

    Article  CAS  Google Scholar 

  65. Poole CF (2012) Gas chromatography. Elsevier, Waltham

    Google Scholar 

  66. Baiulescu G, Ilie VA (1975) Stationary phases in gas chromatography. Pergamon Press, New York

    Google Scholar 

  67. Unger KK (1990) Packing and stationary phases in chromatographic techniques. Marcel Dekker, New York

    Google Scholar 

  68. Rotzsche H (1991) Stationary phases in gas chromatography. Elsevier, Amsterdam

    Google Scholar 

  69. Poole CF, Poole SK (1991) Chromatography today. Elsevier, Amsterdam

    Google Scholar 

  70. Yancey JA (1985) Liquid phases used in packed gas chromatographic columns. Part II. Use of liquid phases which are not polysiloxanes. J Chromatogr Sci 23:370–377

    Article  CAS  Google Scholar 

  71. Barry EF, PhD Grob RL (2007) Columns for gas chromatography: performance and selection. Wiley, New York

    Book  Google Scholar 

  72. Sweeley CC, Bentley R, Makita M, Wells WW (1963) Gas-liquid chromatography of trimethylsilyl derivatives of sugars and related substances. J Am Chem Soc 85:2497–2507

    Article  CAS  Google Scholar 

  73. Morgan ED, Wadhams LJ (1972) Gas chromatography of volatile compounds in small samples of biological materials. J Chromatogr Sci 10:528–529

    Article  CAS  Google Scholar 

  74. Huber JFK, Reich G (1984) Characterization and selection of stationary phases for gas—liquid chromatography by pattern recognition methods. J Chromatogr A 294:15–29

    Article  CAS  Google Scholar 

  75. Davies NW (1990) Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and carbowax 20M phases. J Chromatogr A 503:1–24

    Article  CAS  Google Scholar 

  76. Hong S, Duttweiler CM, Lemley AT (1999) Analysis of methyl tert.-butyl ether and its degradation products by direct aqueous injection onto gas chromatography with mass spectrometry or flame ionization detection systems. J Chromatogr A 857:205–216

    Article  CAS  Google Scholar 

  77. Jenninngs W, Mittlefehldt E, Stremple PP (1997) Analytical gas chromatography, 2nd edn. Academic Press, San Diego

    Google Scholar 

  78. Takeoka G, Jennings W (1984) Developments in the analysis of headspace volatiles: on-column injections into fused silica capillaries and split injections with a low-temperature bonded PEG stationary phase. J Chromatogr Sci 22:177–184

    Article  CAS  Google Scholar 

  79. De la Gándara VM, Sanz J, Martínez-Castro I (1984) A two-step method for the immobilization of stationary phases in GC capillary columns. J High Resolut Chromatogr 7:44–45

    Article  Google Scholar 

  80. Russo MV, Goretti GC, Liberti A (1985) A fast procedure to immobilize polyethylene glycols in glass capillary columns. J High Resolut Chromatogr 8:535–538

    Article  CAS  Google Scholar 

  81. Poole CF, Li Q, Kiridena W, Koziol WW (2000) Selectivity equivalence of poly(ethylene glycol) stationary phases for gas chromatography. J Chromatogr A 898:211–226

    Article  CAS  Google Scholar 

  82. Poole CF, Kiridena W, Nawas MI, Koziol WW (2002) Influence of composition and temperature on the selectivity of stationary phases containing either mixtures of poly(ethylene glycol) and poly(dimethylsiloxane) or copolymers of cyanopropylphenylsiloxane and dimethylsiloxane for open-tubular column gas chr. J Sep Sci 25:749–759

    Article  CAS  Google Scholar 

  83. Poole CF, Poole SK (2008) Separation characteristics of wall-coated open-tubular columns for gas chromatography. J Chromatogr A 1184:254–280

    Article  CAS  Google Scholar 

  84. Miller JM (2005) Chromatography: concepts and contrasts. Wiley, Hoboken

    Google Scholar 

  85. Gianelli MP, Flores M, Toldrá F (2002) Optimisation of solid phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham. J Sci Food Agric 82:1703–1709

    Article  CAS  Google Scholar 

  86. Sng MT, Lee FK, Lakso HA (1997) Solid-phase microextraction of organophosphorus pesticides from water. J Chromatogr A 759:225–230

    Article  CAS  Google Scholar 

  87. Vaes WHJ, Hamwijk C, Ramos EU, Verhaar HJM, Hermens JLM (1996) Partitioning of organic chemicals to polyacrylate-coated solid phase microextraction fibers: kinetic behavior and quantitative structure–property relationships. Anal Chem 68:4458–4462

    Article  CAS  Google Scholar 

  88. Mestres M, Sala C, Martí M, Busto O, Guasch J (1999) Headspace solid-phase microextraction of sulphides and disulphides using Carboxen–polydimethylsiloxane fibers in the analysis of wine aroma. J Chromatogr A 835:137–144

    Article  CAS  Google Scholar 

  89. Miller ME, Stuart JD (1999) Comparison of gas-sampled and SPME-sampled static headspace for the determination of volatile flavor components. Anal Chem 71:23–27

    Article  CAS  Google Scholar 

  90. Abalos M, Bayona JM, Ventura F (1999) Development of a solid-phase microextraction GC-NPD procedure for the determination of free volatile amines in wastewater and sewage-polluted waters. Anal Chem 71:3531–3537

    Article  CAS  Google Scholar 

  91. Barták P, Čáp L (1997) Determination of phenols by solid-phase microextraction. J Chromatogr A 767:171–175

    Article  Google Scholar 

  92. Buchholz KD, Pawliszyn J (1993) Determination of phenols by solid-phase microextraction and gas chromatographic analysis. Environ Sci Technol 27:2844–2848

    Article  CAS  Google Scholar 

  93. Hatti-Kaul R (2001) Aqueous two-phase systems. Mol Biotechnol 19:269–277

    Article  CAS  Google Scholar 

  94. Albertsson PA (1971) Partition of cell particles and macromolecules. Wiley, Hoboken

    Google Scholar 

  95. Rito-Palomares M (2004) Practical application of aqueous two-phase partition to process development for the recovery of biological products. J Chromatogr B Analyt Technol Biomed Life Sci 807:3–11

    Article  CAS  Google Scholar 

  96. Asenjo JA, Andrews BA (2012) Aqueous two-phase systems for protein separation: phase separation and applications. J Chromatogr A 1238:1–10

    Article  CAS  Google Scholar 

  97. Zaslavsky BY (1995) Aqueous two-phase partitioning: physical chemistry and bioanalytical applications. Marcel Dekker, New York

    Google Scholar 

  98. Huddleston JG, Willauer HD, Rogers RD (2003) Phase diagram data for several PEG + salt aqueous biphasic systems at 25 °C. J Chem Eng Data 48:1230–1236

    Article  CAS  Google Scholar 

  99. Rodríguez O, Silvério SC, Madeira PP, Teixeira JA, Macedo EA (2007) Physicochemical characterization of the peg8000-Na2SO4 aqueous two-phase system. Ind Eng Chem Res 46:8199–8204

    Article  CAS  Google Scholar 

  100. Azevedo AM, Rosa PAJ, Ferreira IF, Aires-Barros MR (2007) Optimisation of aqueous two-phase extraction of human antibodies. J Biotechnol 132:209–217

    Article  CAS  Google Scholar 

  101. Silvério SC, Madeira PP, Rodríguez O, Teixeira JA, Macedo EA (2008) Δ G (CH 2) in PEG–salt and Ucon–salt aqueous two-phase systems. J Chem Eng Data 53:1622–1625

    Article  CAS  Google Scholar 

  102. Azevedo AM, Gomes AG, Rosa PAJ, Ferreira IF, Pisco AMMO, Aires-Barros MR (2009) Partitioning of human antibodies in polyethylene glycol–sodium citrate aqueous two-phase systems. Sep Purif Technol 65:14–21

    Article  CAS  Google Scholar 

  103. Hart RA, Bailey JE (1991) Purification and aqueous two-phase partitioning properties of recombinant Vitreoscilla hemoglobin. Enzyme Microb Technol 13:788–795

    Article  CAS  Google Scholar 

  104. Benavides J, Rito-Palomares M (2008) Practical experiences from the development of aqueous two-phase processes for the recovery of high value biological products. J Chem Technol Biotechnol 83:133–142

    Article  CAS  Google Scholar 

  105. Costa MJL, Cunha MT, Cabral JMS, Aires-Barros MR (2000) Scale-up of recombinant cutinase recovery by whole broth extraction with PEG-phosphate aqueous two-phase. Bioseparation 9:231–238

    Article  CAS  Google Scholar 

  106. Rosa PAJ, Azevedo AM, Aires-Barros MR (2007) Application of central composite design to the optimisation of aqueous two-phase extraction of human antibodies. J Chromatogr A 1141:50–60

    Article  CAS  Google Scholar 

  107. Patil G, Raghavarao KSMS (2007) Aqueous two phase extraction for purification of C-phycocyanin. Biochem Eng J 34:156–164

    Article  CAS  Google Scholar 

  108. Zafarani-Moattar MT, Hamidi AA (2003) Liquid–liquid equilibria of aqueous two-phase poly(ethylene glycol)–potassium citrate system. J Chem Eng Data 48:262–265

    Article  CAS  Google Scholar 

  109. Silvério SC, Ferreira LA, Martins JA, Marcos JC, Macedo EA, Teixeira JA (2012) Lysozyme and bovine serum albumin partitioning in polyethylene glycol–phenylalanine conjugate polymer/salt aqueous two-phase systems. Fluid Phase Equilib 322:19–25

    Article  CAS  Google Scholar 

  110. Abelson MS (1994) Aqueous two-phase systems. Academic Press, New York

    Google Scholar 

  111. De Oliveira FC, dos Reis Coimbra JS, da Silva LHM, Rojas EEG, do Carmo Hespanhol da Silva M (2009) Ovomucoid partitioning in aqueous two-phase systems. Biochem Eng J 47:55–60

    Article  CAS  Google Scholar 

  112. Dreyer S, Salim P, Kragl U (2009) Driving forces of protein partitioning in an ionic liquid-based aqueous two-phase system. Biochem Eng J 46:176–185

    Article  CAS  Google Scholar 

  113. Asenjo JA, Schmidt AS, Hachem F, Andrews BA (1994) Model for predicting the partition behaviour of proteins in aqueous two-phase systems. J Chromatogr A 668:47–54

    Article  CAS  Google Scholar 

  114. Berggren K, Johansson H-O, Yjerneld F (1995) Effects of salts and the surface hydrophobicity of proteins on partitioning in aqueous two-phase systems containing thermoseparating ethylene oxide-propylene oxide copolymers. J Chromatogr A 718:67–79

    Article  CAS  Google Scholar 

  115. Hachem F, Andrews BA, Asenjo JA (1996) Hydrophobic partitioning of proteins in aqueous two-phase systems. Enzyme Microb Technol 19:507–517

    Article  CAS  Google Scholar 

  116. Shanbhag VP (1994) Estimation of surface hydrophobicity of proteins by partitioning. Methods Enzymol 228:254–264

    Article  CAS  Google Scholar 

  117. Shanbhag VP, Axelsson C-G (1975) Hydrophobic interaction determined by partition in aqueous two-phase systems. partition of proteins in systems containing fatty-acid esters of poly(ethylene glycol). Eur J Biochem 60:17–22

    Article  CAS  Google Scholar 

  118. Shanbhag VP, Johansson G (1974) Specific extraction of human serum albumin by partition in aqueous biphasic systems containing poly(ethylene glycol) bound ligand. Biochem Biophys Res Commun 61:1141–1146

    Article  CAS  Google Scholar 

  119. Sasakawa S, Walter H (1972) Partition behavior of native proteins in aqueous dextran-poly(ethylene glycol)-phase systems. Biochemistry 11:2760–2765

    Article  CAS  Google Scholar 

  120. Selber K, Tjerneld F, Collén A, Hyytiä T, Nakari-Setälä T, Bailey M, Fagerström R, Kan J, van der Laan J, Penttilä M, Kula M-R (2004) Large-scale separation and production of engineered proteins, designed for facilitated recovery in detergent-based aqueous two-phase extraction systems. Process Biochem 39:889–896

    Article  CAS  Google Scholar 

  121. Naganagouda K, Mulimani VH (2008) Aqueous two-phase extraction (ATPE): an attractive and economically viable technology for downstream processing of Aspergillus oryzae α-galactosidase. Process Biochem 43:1293–1299

    Article  CAS  Google Scholar 

  122. Rosa PAJ, Rosa PA, Azevedo A, Sommerfeld S, Mutter M, Aires-Barros M, Bäcker W (2009) Application of aqueous two-phase systems to antibody purification: a multi-stage approach. J Biotechnol 139:306–313

    Article  CAS  Google Scholar 

  123. Doozandeh SG, Pazuki G, Madadi B, Rohani AA (2012) Measurement of cephalexin partition coefficients in PEG + K2HPO4 + H2O aqueous two-phase systems at 301.15, 306.15 and 311.15K. J Mol Liq 174:95–99

    Article  CAS  Google Scholar 

  124. Benavides J, Aguilar O, Lapizco-Encinas BH, Rito-Palomares M (2008) Extraction and purification of bioproducts and nanoparticles using aqueous two-phase systems strategies. Chem Eng Technol 31:838–845

    Article  CAS  Google Scholar 

  125. Luechau F, Ling TC, Lyddiatt A (2011) Selective partition of plasmid DNA and RNA from crude Escherichia coli cell lysate by aqueous two-phase systems. Biochem Eng J 55:230–232

    Article  CAS  Google Scholar 

  126. Rogers RD, Eiteman MA (1995) Aqueous biphasic separations: biomolecules to metal ions. Plenum Press, New York

    Book  Google Scholar 

  127. Van Oss CJ (1986) A review of: partition of cell particles and macromolecules. Wiley/Interscience, 3rd edn, New York. Prep Biochem 16:273–274

    Google Scholar 

  128. Shibukawa M, Nakayama N, Hayashi T, Shibuya D, Endo Y, Kawamura S (2001) Extraction behaviour of metal ions in aqueous polyethylene glycol–sodium sulphate two-phase systems in the presence of iodide and thiocyanate ions. Anal Chim Acta 427:293–300

    Article  CAS  Google Scholar 

  129. Yoshikuni N, Baba T, Tsunoda N, Oguma K (2005) Aqueous two-phase extraction of nickel dimethylglyoximato complex and its application to spectrophotometric determination of nickel in stainless steel. Talanta 66:40–44

    Article  CAS  Google Scholar 

  130. Rosa PAJ, Azevedo AM, Sommerfeld S, Bäcker W, Aires-Barros MR (2011) Aqueous two-phase extraction as a platform in the biomanufacturing industry: economical and environmental sustainability. Biotechnol Adv 29:559–567

    Article  CAS  Google Scholar 

  131. Aguilar O, Albiter V, Serrano-Carreón L, Rito-Palomares M (2006) Direct comparison between ion-exchange chromatography and aqueous two-phase processes for the partial purification of penicillin acylase produced by E. coli. J Chromatogr B Analyt Technol Biomed Life Sci 835:77–83

    Article  CAS  Google Scholar 

  132. Everberg H, Leiding T, Schiöth A, Tjerneld F, Gustavsson N (2006) Efficient and non-denaturing membrane solubilization combined with enrichment of membrane protein complexes by detergent/polymer aqueous two-phase partitioning for proteome analysis. J Chromatogr A 1122:35–46

    Article  CAS  Google Scholar 

  133. Everberg H, Sivars U, Emanuelsson C, Persson C, Englund A-K, Haneskog L, Lipniunas P, Jörntén-Karlsson M, Tjerneld F (2004) Protein pre-fractionation in detergent–polymer aqueous two-phase systems for facilitated proteomic studies of membrane proteins. J Chromatogr A 1029:113–124

    Article  CAS  Google Scholar 

  134. Novak U, Pohar A, Plazl I, Žnidaršič-Plazl P (2012) Ionic liquid-based aqueous two-phase extraction within a microchannel system. Sep Purif Technol 97:172–178

    Article  CAS  Google Scholar 

  135. Andrew AT (1986) Electrophoresis, 2nd edn. Claredon Press, Oxford

    Google Scholar 

  136. Tiselius A, Hjertén S, Levin Ö (1956) Protein chromatography on calcium phosphate columns. Arch Biochem Biophys 65:132–155

    Article  Google Scholar 

  137. Schröder E, Jönsson T, Poole L (2003) Hydroxyapatite chromatography: altering the phosphate-dependent elution profile of protein as a function of pH. Anal Biochem 313:176–178

    Article  Google Scholar 

  138. Ibañez E, Señoráns F (2000) Tuning of mobile and stationary phase polarity for the separation of polar compounds by SFC. J Biochem Biophys Methods 43:25–43

    Article  Google Scholar 

  139. Ibañez E, Palacios J, Reglero G (1999) Analysis of tocopherols by on-line coupling supercritical fluid extraction-supercritical fluid chromatography. J Microcolumn Sep 11:605–611

    Article  Google Scholar 

  140. Courtois J, Byström E, Irgum K (2006) Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation. Polymer (Guildf) 47:2603–2611

    Article  CAS  Google Scholar 

  141. Svec F (2004) Organic polymer monoliths as stationary phases for capillary HPLC. J Sep Sci 27:1419–1430

    Article  CAS  Google Scholar 

  142. Hosoya K, Hira N, Yamamoto K, Nishimura M, Tanaka N (2006) High-performance polymer-based monolithic capillary column. Anal Chem 78:5729–5735

    Article  CAS  Google Scholar 

  143. Gritti F, Dos Santos Pereira A, Sandra P, Guiochon G (2010) Efficiency of the same neat silica column in hydrophilic interaction chromatography and per aqueous liquid chromatography. J Chromatogr A 1217:683–688

    Article  CAS  Google Scholar 

  144. Jandera P, Hájek T (2009) Utilization of dual retention mechanism on columns with bonded PEG and diol stationary phases for adjusting the separation selectivity of phenolic and flavone natural antioxidants. J Sep Sci 32:3603–3619

    Article  CAS  Google Scholar 

  145. Pazourek J (2010) Monitoring of mutarotation of monosaccharides by hydrophilic interaction chromatography. J Sep Sci 33:974–981

    Article  CAS  Google Scholar 

  146. Li B, Meng R (1990) Liquid–solid extraction system based on between 40-salt-H2O without organic solvents. Talanta 37:885–888

    Article  CAS  Google Scholar 

  147. Okada T (2002) Temperature-induced phase separation of nonionic polyoxyethylated surfactant and application to extraction of metal thiocyanates. Anal Chem 64:2138–2142

    Article  Google Scholar 

  148. Zvarova TI, Shkinev VM, Shkinev VM, Vorob’eva GA, Spivakov BY, Zolotov YA (1984) Liquid–liquid extraction in the absence of usual organic solvents: application of two-phase aqueous systems based on a water-soluble polymer. Mikrochim Acta 84:449–458

    Article  Google Scholar 

  149. Molochnikova NP, Frenkel VY, Myasoedov BF (1988) Extraction of actinides in two-phase water-poly(ethylene glycol)—salt systems in the presence of potassium phosphotungstate. J Radioanal Nucl Chem Artic 121:409–413

    Article  Google Scholar 

  150. Molochnikova NP, Shkinev VH, Hyasoedov BF (1992) Two-phase aqueous systems based on poly(ethylene glycol) for extraction separation of actinides in various media. Solvent Extr Ion Exch 10:697–712

    Article  CAS  Google Scholar 

  151. Okada T (1993) Complexation of poly(oxyethy1ene) in analytical chemistry. Analyst 113:959–971

    Article  Google Scholar 

  152. Shen R, Song K, Liu H, Li Y, Liu H (2012) Dramatic fluorescence enhancement of bare carbon dots through facile reduction chemistry. ChemPhysChem 13:3549–3555

    Article  CAS  Google Scholar 

  153. Marsh JR, Danielson ND (1991) Stabilization of lactate dehydrogenase activity by polyethylene glycol for enzymatic assays using flow injection analysis at microliter per minute flow rates. Microchem J 44:4–14

    Article  CAS  Google Scholar 

  154. Marsh JR, Danielson ND (1995) Determination of substrates using poly(ethylene glycol)-stabilized dehydrogenase enzymes by microlitre per minute flow injection. Analyst 120:1091–1096

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil D. Danielson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, F.R., Zhou, L. & Danielson, N.D. Applications of Poly(Ethylene)Glycol (PEG) in Separation Science. Chromatographia 78, 1427–1442 (2015). https://doi.org/10.1007/s10337-015-2983-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-015-2983-y

Keywords

Navigation