Skip to main content

Advertisement

Log in

Movements of three alcid species breeding sympatrically in Saint Pierre and Miquelon, northwestern Atlantic Ocean

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Among seabirds, alcids are particularly sensitive to bycatch in fisheries and oil pollution, yet their distribution at sea remains scarcely known in most of their breeding areas. GPS telemetry data of fifteen individuals of alcids (5 Razorbills 6 Common Murres and 4 Puffins) were analyzed to determine their distribution during the breeding period of 2016 at Saint Pierre and Miquelon Archipelago (SPM). Two analytical methods (threshold and a switching state-space model) were used to identify behavioral modes and foraging areas. We compared foraging movements and estimated the overlap between the species. Distribution and foraging covered an area located between SPM and Newfoundland. Our results revealed that the three species headed northward of their breeding colony, targeting coastal waters. Nonetheless, the three species differed in their habitat distribution as well as in their space-use sharing. There was limited overlap between the foraging zones of the three species and a gillnet fishery targeting Atlantic salmon. Identifying alcids habitat use is imperative to the successful management and survival of these marine species especially since the distribution areas coincide with fishing pressure.

Zusammenfassung

Bewegungsmuster dreier auf Saint-Pierre und Miquelon im nordwestlichen Atlantik sympatrisch brütender Alkenvogelarten

Unter den Seevögeln reagieren Alkenvögel besonders empfindlich auf Beifang durch die Fischerei und auf Ölverschmutzung. Doch die Verbreitung dieser Vögel auf See ist in den meisten ihrer Brutgebiete immer noch kaum bekannt. GPS-Telemetriedaten von 15 Individuen aus der Familie der Alkenvögel (5 Tordalke, 6 Trottellummen, 4 Papageientaucher) wurden analysiert, um ihre Verbreitung während der Brutzeit 2016 um die Inselgruppe Saint-Pierre und Miquelon (SPM) zu bestimmen. Zwei Analysemethoden (eng. threshold & switching state-space model) wurden zur Identifizierung von Verhaltensweisen und Nahrungssuchgebieten genutzt. Wir verglichen Bewegungsmuster während der Nahrungssuche und schätzten ihre Überschneidungen zwischen den Arten ein. Verbreitung und Nahrungssuchgebiete umfassten den Bereich zwischen SPM und Neufundland. Unsere Ergebnisse zeigten, dass alle drei Arten in Richtung der Küstengewässer nördlich ihrer Brutkolonien zogen. Dennoch unterschieden sich die drei Arten in ihrer Verteilung im Habitat und in der gemeinsamen Raumnutzung. Es gab nur geringe Überschneidungen zwischen den Nahrungssuchgebieten der drei Arten und einer Stellnetzfischerei, die auf Atlantischen Lachs abzielt. Die Identifizierung der Habitatnutzung von Alkenvögeln ist für das erfolgreiche Management und das Überleben dieser marinen Arten, vor allem seitdem die Verbreitungsgebiete mit dem Befischungsdruck zusammentreffen, zwingend erforderlich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the Movebank repository, https://www.movebank.org/panel_embedded_movebank_webapp, Alcids Tracking breeding at Saint Pierre and Miquelon, North Atlantic, France, ID: 773585900

References

  • Benjamins S, Kulka DW, Lawson J (2008) Incidental catch of seabirds in Newfoundland and Labrador gillnet fisheries, 2001–2003. Endanger Species Res 5:149–160

    Article  Google Scholar 

  • Breed GA, Bowen W, McMillan J, Leonard ML (2006) Sexual segregation of seasonal foraging habitats in a non-migratory marine mammal. Proc R Soc Lond B Biol Sci 273:2319–2326

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. The University of Chicago Press, New York

    Google Scholar 

  • Calenge C (2006) The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  • Chapman DC, Beardsley RC (1989) On the origin of shelf water in the middle atlantic bight. J Phys Oceanogr 19:384–391

    Article  Google Scholar 

  • Chimienti M, Cornulier T, Owen E et al (2017) Taking movement data to new depths: inferring prey availability and patch profitability from seabird foraging behavior. Ecol Evol 7:10252–10265. https://doi.org/10.1002/ece3.3551

    Article  PubMed  PubMed Central  Google Scholar 

  • Croxall JP, Butchart SHM, Lascelles B et al (2012) Seabird conservation status, threats and priority actions: a global assessment. Bird Conserv Int 22:1–34

    Article  Google Scholar 

  • Cyr F, Larouche P (2015) Thermal fronts atlas of canadian coastal waters. Atmos Ocean 53:212–236. https://doi.org/10.1080/07055900.2014.986710

    Article  Google Scholar 

  • Davoren GK (2007) Effects of gill-net fishing on marine birds in a biological hotspot in the Northwest Atlantic. Conserv Biol 21:1032–1045

    Article  Google Scholar 

  • Davoren GK, Montevecchi WA (2003) Consequences of foraging trip duration on provisioning behaviour and fledging condition of common murres Uria aalge. J Avian Biol 34:44–53

    Article  Google Scholar 

  • Elliott KH, Shoji A, Campbell KL, Gaston AJ (2010) Oxygen stores and foraging behavior of two sympatric, planktivorous alcids. Aquat Biol 8:221–235. https://doi.org/10.3354/ab00236

    Article  Google Scholar 

  • Ellis JI, Wilhelm SI, Hedd A et al (2013) Mortality of migratory birds from marine commercial fisheries and offshore oil and gas production in Canada. Avian Conserv Ecol 8:2. https://doi.org/10.5751/ACE-00589-080204

    Article  Google Scholar 

  • Fieberg J, Kochanny CO (2005) Quantifying home-range overlap: the importance of the utilization distribution. J Wildl Manag 69:1346–1359

    Article  Google Scholar 

  • Gaston AJ (2004) Seabirds: a natural history. Yale University Press, New Haven, CT

    Google Scholar 

  • Han G (2008) Seasonal variability of the labrador current and shelf circulation off Newfoundland. J Geophys Res Oceans 113:C10

    Google Scholar 

  • Hedd A, Regular PM, Wilhelm SI et al (2016) Characterization of seabird bycatch in eastern Canadian waters, 1998–2011, assessed from onboard fisheries observer data. Aquat Conserv Mar Freshw Ecosyst 26:530–548. https://doi.org/10.1002/aqc.2551

    Article  Google Scholar 

  • Jonsen ID, Flenming JM, Myers RA (2005) Robust state-space modeling of animal movement data. Ecology 86:2874–2880

    Article  Google Scholar 

  • Langrock R, King R, Matthiopoulos J et al (2012) Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. Ecology 93:2336–2342. https://doi.org/10.1890/11-2241.1

    Article  PubMed  Google Scholar 

  • Lazure P, Le Cann B, Bezaud M (2018) Large diurnal bottom temperature oscillations around the Saint Pierre and Miquelon archipelago. Sci Rep 8:13882. https://doi.org/10.1038/s41598-018-31857-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le Fouest V, Zakardjian B, Saucier FJ, Starr M (2005) Seasonal versus synoptic variability in planktonic production in a high-latitude marginal sea: the Gulf of St. Lawrence (Canada). J Geophys Res Oceans 110:C09012. https://doi.org/10.1029/2004jc002423

    Article  Google Scholar 

  • Legendre L, Demers S (1984) Towards dynamic biological oceanography and limnology. Can J Fish Aquat Sci 41:2–19. https://doi.org/10.1139/f84-001

    Article  Google Scholar 

  • Legendre L, Demers S, Therriault J, Boudreau C (1985) Tidal variations in the photosynthesis of estuarine phytoplankton isolated in a tank. Mar Biol 88:301–309. https://doi.org/10.1007/BF00392591

    Article  CAS  Google Scholar 

  • Lesage V, Hammill MO, Kovacs KM (2001) Marine mammals and the community structure of the Estuary and Gulf of St Lawrence, Canada: evidence from stable isotope analysis. Mar Ecol Prog Ser 210:203–221. https://doi.org/10.3354/meps210203

    Article  CAS  Google Scholar 

  • Lewison RL, Crowder LB, Wallace BP, Moore JE, Cox T, Zydelis R, McDonald S, DiMatteo A, Dunn DC, Kot CY, Bjorkland R, Kelez S, Soykan C, Stewart KR, Sims M, Boustany A, Read AJ, Halpin P, Nichols WJ, Safina C (2014) Global patterns of marine mammal, seabird, and sea turtle bycatch reveal taxa-specific and cumulative megafauna hotspots. Proc Nat Acad Sci 111(14):5271–5276

    Article  CAS  Google Scholar 

  • Linnebjerg JF, Fort J, Guilford T et al (2013) Sympatric breeding auks shift between dietary and spatial resource partitioning across the annual cycle. PLoS One 8(8):e72987

    Article  CAS  Google Scholar 

  • Lormée H, Delord K, Letournel B (2008) Dénombrement des oiseaux marins nicheurs sur l’Ile du Grand Colombier (Saint Pierre and Miquelon). Unpublished ONCFS Report, pp 23

  • Lormée H, Delord K, Letournel B, Barbraud C (2012) Population survey of Leach’s storm-petrels breeding atGrand Colombier Island, Saint-Pierre and Miquelon archipelago. Wilson J Ornithol 124:245–252

    Article  Google Scholar 

  • Lormée H, Barbraud C, Letournel B (2015) Etude des populations d’oiseaux marins nicheurs sur l’Ile du Grand Colombier (Saint Pierre and Miquelon). Direction de l’Agriculture et de la Forêt, Saint Pierre, Saint Pierre et Miquelon. Unpublished ONCFS Report, pp 24

  • Michelot T, Langrock R, Patterson TA (2016) moveHMM: an R package for the statistical modelling of animal movement data using hidden Markov models. Methods Ecol Evol 7:1308–1315. https://doi.org/10.1111/2041-210X.12578

    Article  Google Scholar 

  • Oppel S, Bolton M, Carneiro APB et al (2018) Spatial scales of marine conservation management for breeding seabirds. Mar Policy 98:37–46. https://doi.org/10.1016/j.marpol.2018.08.024

    Article  Google Scholar 

  • Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell R, Stair GR (eds) Columbus. Ohio State University Press, Ohio, pp 155–177

    Google Scholar 

  • Patterson TA, Basson M, Bravington MV, Gunn JS (2009) Classifying movement behaviour in relation to environmental conditions using hidden Markov models. J Anim Ecol 78:1113–1123. https://doi.org/10.1111/j.1365-2656.2009.01583.x

    Article  PubMed  Google Scholar 

  • Petrie B, Anderson C (1983) Circulation on the Newfoundland continental shelf. Atmos Ocean 21:207–226

    Article  Google Scholar 

  • Phillips RA, Wakefield ED, Croxall JP et al (2009) Albatross foraging behaviour: no evidence for dual foraging, and limited support for anticipatory regulation of provisioning at South Georgia. Mar Ecol Prog Ser 391:279–292

    Article  Google Scholar 

  • Piatt J, Nettleship D (1987) Iincidental catch of marine birds and mammals in fishing netts off Newfoundland, Canada. Mar Pollut Bull 18:344–349. https://doi.org/10.1016/S0025-326X(87)80023-1

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S et al (2013) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-117

  • Pratte I, Robertson GJ, Mallory ML (2017) Four sympatrically nesting auks show clear resource segregation in their foraging environment. Mar Ecol Prog Ser 572:243–254. https://doi.org/10.3354/meps12144

    Article  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/. Accessed 1 Mar 2018

  • Regular PM, Robertson GJ, Montevecchi WA et al (2010) Relative importance of human activities and climate driving common murre population trends in the Northwest Atlantic. Polar Biol 33:1215–1226

    Article  Google Scholar 

  • Rodway MS, Montevecchi WA (1996) Sampling methods for assessing the diets of Atlantic puffin chicks. Mar Ecol Prog Ser 144:41–55. https://doi.org/10.3354/meps144041

    Article  Google Scholar 

  • Rutherfort K, Fennel K (2018) Diagnosing transit times on the northwestern North Atlantic continental shelf. Ocean Sci 14:1207–1221

    Article  CAS  Google Scholar 

  • Shoji A, Elliott K, Fayet A et al (2015) Foraging behaviour of sympatric razorbills and puffins. Mar Ecol Prog Ser 520:257–267. https://doi.org/10.3354/meps11080

    Article  Google Scholar 

  • Shoji A, Aris-Brosou S, Elliott KH (2016) Physiological constraints and dive behavior scale in tandem with body mass in auks: a comparative analysis. Comp Biochem Physiol Mol Integr Physiol 196:54–60. https://doi.org/10.1016/j.cbpa.2016.02.023

    Article  CAS  Google Scholar 

  • Thaxter CB, Wanless S, Daunt F et al (2010) Influence of wing loading on the trade-off between pursuit-diving and flight in common guillemots and razorbills. J Exp Biol 213:1018–1025. https://doi.org/10.1242/jeb.037390

    Article  PubMed  CAS  Google Scholar 

  • Wakefield ED, Phillips RA, Matthiopoulos J (2009) Quantifying habitat use and preferences of pelagic seabirds using individual movement data: a review. Mar Ecol Prog Ser 391:165–182

    Article  Google Scholar 

  • Wanless S, Harris MP, Morris JA (1990) A comparison of feeding areas used by individual common murres (Uria aalge), razorbills (Alca torda) and an Atlantic puffin (Fratercula arctica) during the breeding season. Colon Waterbirds 13(1):16–24

    Article  Google Scholar 

  • White M, Hay AE (1994) Dense overflow into a large silled embayment: tidal modulation, front and basin modes. J Mar Sci 52:459–487

    Google Scholar 

  • Zucchini W, Raubenheimer D, MacDonald IL (2008) Modeling time series of animal behavior by means of a latent-state model with feedback. Biometrics 64:807–815. https://doi.org/10.1111/j.1541-0420.2007.00939.x

    Article  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

  • Žydelis R, Bellebaum J, Ísterblom H et al (2009) Bycatch in gillnet fisheries—an overlooked threat to waterbird populations. Biol Conserv 142:1269–1281

    Article  Google Scholar 

  • Žydelis R, Small C, French G (2013) The incidental catch of seabirds in gillnet fisheries: a global review. Biol Conserv 162:76–88

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Richard Martin (Office National de la Chasse et de la Faune Sauvage-ONCFS), Jean Bouilleau (ONCFS) for their help in field operations and Lina Gouichiche for a preliminary data exploration. We thank K. Heerah and S. Bertrand for helpful advice on the HMM analyses. We thank two anonymous referees for constructive comments on earlier drafts.

Funding

The study was funded by Direction des Territoires, de l’Alimentation et de la Mer de Saint Pierre et Miquelon (FR) and the European Program BEST 2.0.

Author information

Authors and Affiliations

Authors

Contributions

Study design: HL, CB, KD fieldwork: HL, CB, KD, BL, data analysis and processing: KD, KD wrote the text and all authors edited and revised the manuscript, gave final approval for publication and agreed to be held accountable for the content therein.

Corresponding author

Correspondence to Karine Delord.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. All capture and handling procedures were in accordance with the permits provided by the competent Authority (French Ministry of Environment, Energy and Sea).

Additional information

Communicated by N. Chernetsov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 502 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delord, K., Barbraud, C., Pinaud, D. et al. Movements of three alcid species breeding sympatrically in Saint Pierre and Miquelon, northwestern Atlantic Ocean. J Ornithol 161, 359–371 (2020). https://doi.org/10.1007/s10336-019-01725-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-019-01725-z

Keywords

Navigation