Skip to main content
Log in

The effects of climate change on the distribution of South American antbirds (Thamnophilus punctatus complex) as affected by niche divergences and contact zone interactions between species

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Several studies have shown that climatic change has been accelerating due to human activities, leading to dramatic effects on biodiversity. Modeling studies describe how species have reacted in the past to climatic change, and this information can help us to understand the degree of biotic susceptibility to current and future climatic change. This work aims to determine the effects of past, current and future climatic changes on the geographic distribution of the species complex Thamnophilus punctatus, a bird clade widely distributed across Neotropical dry forests. We also investigate if species that are phylogenetically similar have comparable climatic niches and, consequently, can be expected to respond similarly to climatic change. For this purpose, we calculated similarity, niche overlap, equivalence and genetic distance between all species, modeling their geographic distributions during the Last Glacial Maximum (LGM) as well as under current conditions and future (2050–2080) scenarios. Our results indicate that there are differences in responses to climatic changes from the LGM to the present among the five species of the T. punctatus complex and that the niches in the measured dimensions are not conserved among the studied species. We therefore suggest that the adequate environmental space of taxa of a widely distributed lineage can be shaped in distinct way, regardless of how closely related their species are or how much their niches overlap. Competitive exclusion in zones of contact is an important factor determining the geographical range of the species of the Thamnophilus punctatus complex, particularly for the very closely related species T. sticturus, T. pelzelni and T. ambiguus.

Zusammenfassung

Effekte des Klimawandels auf die Verbreitung südamerikanischer Ameisenvögel ( Thamnophilus punctatus complex) unter dem Einfluss von Nischendivergenz und Kontaktzoneninteraktionen zwischen Arten

Verschiedene Studien haben gezeigt, dass der Klimawandel durch menschliche Aktivitäten beschleunigt wurde, was zu dramatischen Auswirkungen auf die Biodiversität führt. Modellierungen beschreiben, wie Arten in der Vergangenheit auf klimatische Veränderungen reagiert haben. Diese Informationen können uns helfen, den Grad der biotischen Empfindlichkeit gegenüber aktuellen und zukünftigen Klimaveränderungen zu verstehen. Diese Arbeit verfolgt das Ziel, die Auswirkungen vergangener, aktueller und zukünftiger Klimaveränderungen auf die geografische Verbreitung des Artenkomplexes Thamnophilus punctatus, eine weit verbreitete Vogelartengruppe in neotropischen Trockenwäldern, zu ermitteln. Wir untersuchten auch, ob phylogenetisch ähnliche Arten vergleichbare klimatische Nischen besetzen und somit ähnlich auf Klimaveränderungen reagieren. Zu diesem Zweck berechneten wir Ähnlichkeit, Nischenüberlappung, Äquivalenz und genetische Distanz zwischen allen Thamnophilus-Arten und modellierten ihre geografischen Verbreitungen während des letzten glazialen Maximums (LGM) sowie unter aktuellen Bedingungen und zukünftigen (2050–2080) Szenarien. Unsere Ergebnisse zeigen, dass es unterschiedliche Reaktionen auf den Klimawandel seit dem LGM bis jetzt zwischen fünf Arten des T. punctatus Komplex gibt. Die Ergebnisse zeigen auch, dass die Nischen der untersuchten Arten in den gemessenen Dimensionen nicht untereinander festgelegt sind. Wir nehmen daher an, dass ein ausreichender Umweltraum für Taxa einer weit verbreiteten Abstammungslinie in ausgeprägter Weise gestaltet werden kann, unabhängig davon, wie nah verwandt die Arten sind und wie groß ihre Nischenüberlappung ist. Kompetitiver Ausschluss in Bereichen, wo sich Vorkommen überlappen, ist ein wichtiger Faktor bei der Bestimmung des geografischen Verbreitungsgebietes der Arten des Thamnophilus punctatus Komplex, insbesondere für die sehr nah verwandten Arten T. sticturus, T. pelzelni and T. ambiguus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ab’Saber AN (1977) Os domínios morfoclimáticos na América do Sul: primeira aproximação. Geomorfol São Paulo 52:1–22

    Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37:1378–1393

    Article  Google Scholar 

  • Antonelli A, Zizka A, Antunes CF, Scharn R, Bacon CD, Silvestro D, Condamine FL (2018) Amazonia is the primary source of Neotropical biodiversity. Proc Natl Acad Sci USA 115(23):6034–6039. https://doi.org/10.1073/pnas.1713819115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL (2013) Heat freezes niche evolution. Ecol Lett 16:1206–1219

    Article  PubMed  Google Scholar 

  • Arruda MD, Schaefer CGR, Fonseca RUS, Solar RRUS, Filho EIF (2018) Vegetation cover of Brazil in the last 21 ka: new insights into the Amazonian refugia and Pleistocenic arc hypotheses. Glob Ecol Biog 27:47–56. https://doi.org/10.1111/geb.12646

    Article  Google Scholar 

  • Bean WT, Stafford R, Brashares JS (2012) The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35:250–258. https://doi.org/10.1111/j.1600-0587.2011.06545.x

    Article  Google Scholar 

  • Belmonte-Lopes R (2013) Investigando o isolamento esplêndido da América do Sul: filogenia a biogeografia histórica dos Thamnophilidae (Aves: Passeriformes: Tyranni). PhD thesis, Universidade Federal do Paranã, Brazil, p 182

  • Bickford D, Howard SD, Daniel JJNG, Sheridan JA (2010) Impacts of climatic change on the amphibians and reptiles of Southeast Asia. Biodivers Conserv 19:1043–1062. https://doi.org/10.1007/s10531-010-9782-4

    Article  Google Scholar 

  • Bowman AW, Azzalini A (2014) R package sm: nonparametric smoothing methods (version 2.2-5.4). University of Glasgow, UK and Università di Padova, Italia. http://www.stats.gla.ac.uk/~adrian/sm, http://azzalini.stat.unipd.it/Book_sm

  • Bravo GA (2012) Phenotypic and niche evolution in the antbirds (Aves, Thamnophilidae). Ph.D. dissertation, Louisiana State University

  • Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, Thuiller W, Fortin MJ, Randin C, Zimmermann NE, Graham CH, Guisan A (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Glob Ecol Biog 21:481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x

    Article  Google Scholar 

  • Broennimann O, Di Cola V, Guisan A (2016) Ecospat: spatial ecology miscellaneous methods. R package version 2.1.1. https://CRAN.Rproject.org/package=ecospat

  • Brumfield RT, Edwards SV (2007) Evolution into and out of the Andes: a Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution 61:346–367

    Article  CAS  PubMed  Google Scholar 

  • Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C (2009) Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science. https://doi.org/10.1126/science.1166955

    Article  PubMed  Google Scholar 

  • Collevatti GR, Nabout JC, Diniz-Filho JAF (2011) Range shift and loss of genetic diversity under climatic change in Caryocar brasiliense, a Neotropical tree species. Springer Tree Genet Genomes 7:1237–1247. https://doi.org/10.1007/s11295-011-0409-z

    Article  Google Scholar 

  • Costa GC, Ledru HAMP, Martinez PA, Mazzochini GG, Shepard DB, Werneck FP, Moritz C, Carnaval AC (2017) Biome stability in South America over the last 30 kyr: Inferences from long-term vegetation dynamics and habitat modeling. Glob Ecol Biogeogr. https://doi.org/10.1111/geb.12694

    Article  Google Scholar 

  • Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6(3):241–252

    Article  Google Scholar 

  • Fearnside P (2018) Why Brazil’s new president poses an unprecedented threat to the Amazon. Yale Environ 360. https://e360.yale.edu/features/why-brazils-new-president-poses-an-unprecedented-threat-to-the-amazon. Accessed 6 March 2019

  • Fernandes AM (2013) Fine-scale endemism of Amazonian birds in a threatened Landscape. Biodivers Conserv 22:2683–2694. https://doi.org/10.1007/s10531-013-0546-9

    Article  Google Scholar 

  • Grant WAS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. J of Hered 89:415–426. https://doi.org/10.1093/jhered/89.5.415

    Article  Google Scholar 

  • Grohnert N, Piacentini VQ (2018) Caracterização da zona de contato entre duas espécies do complexo Thamnophilus punctatus (Thamnophilidae) no Mato Grosso: T. sticturus × T. pelzelni. Congresso Brasileiro de Ornitologia 2018. João Pessoa, PB, Brasil

  • Guisan A, Thuiller W, Zimmermann N (2017) Maximum entropy. In: Habitat suitability and distribution models: with applications in R (ecology, biodiversity and conservation). Cambridge University Press, Cambridge, pp 217–223. https://doi.org/10.1017/9781139028271.019

  • Häggi C, Chiessib CM, Merkela U, Mulitzaa S, Prangea M, Schulza M, Schefu E (2017) Response of the Amazon rainforest to late Pleistocene climate variability. Earth Planet Sci Lett. https://doi.org/10.1016/j.epsl.2017.09.013

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Superfícies climáticas interpoladas de alta resolução para áreas terrestres globais. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hollander M, Wolfe DW (1973) Nonparametric statistical methods. Wiley, New York, pp 115–120

    Google Scholar 

  • Hoorn C, Wesselingh FP, Steege H, Bermutez MA, Mora A, Sevink J, Sanchez-Mesenguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Sarkinen T, Antonelli A (2010) Amazonia through time: andean uplift, climate change, landscape. Evol Biodivers Sci 330:927–931

    CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Team Core Writing, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate change. IPCC, Geneva

    Google Scholar 

  • Isler ML, Isler PR, Whitney BM (1997) Biogeography and systematics of the Thamnophilus punctatus (Thamnophilidae) complex. Ornitol Monogr 48:355–381

    Article  Google Scholar 

  • Jaramillo C, Cárdenas A (2013) Global warming and neotropical rainforests: a historical perspective. Annu Rev Earth Planet Sci. https://doi.org/10.1146/annurev-earth-042711-105403

    Article  Google Scholar 

  • Khaliq I, Fritz SA, Prinzinger R, Pfenninger M, Böhning-Gaese K, Hof C (2015) Global variation in thermal physiology of birds and mammals: evidence for phylogenetic niche conservatism only in the tropics. J Biogeogr 42:2187–2196

    Article  Google Scholar 

  • Kozak KH, Wiens JJ (2010) Niche conservatism drives elevational diversity patterns in Appalachian Salamanders. Am Nat. https://doi.org/10.1086/653031

    Article  PubMed  Google Scholar 

  • Ledru MP, Mourguiart P, Riccomini C (2009) Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. Palaeogeogr Palaeoclimatol Palaeoecol 271:140–152

    Article  Google Scholar 

  • Makarieva AM, Gorshkov VG (2007) Biotic pump of atmospheric moisture as driver of the hydrological cycle on land. Hydrol Earth Syst Sci 11:1013–1033. https://doi.org/10.5194/hess-11-1013-2007

    Article  Google Scholar 

  • Marengo JA (2007) Mudanças Climáticas Globais e seus Efeitos sobre a Biodiversidade, Caracterização do Clima Atual e Definição das Alterações Climáticas para o Território Brasileiro ao Longo do Século XXI. Brasília, MMA

    Google Scholar 

  • Marengo JA, Ambrizzi T, Da Rocha RP, Alves LM, Cuadra SV, Valverde MC, Torres RR, Santos DC, Ferraz SET (2009) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn. https://doi.org/10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Marengo JA, Alves LM, Bezerra EA, Lacerda FF (2011) Variabilidade e mudanças climáticas no semiárido brasileiro. Recursos hídricos em regiões áridas e semiáridas. ISBN 978-85-64265-01-1. Instituto Nacional do Semiárido, Campina Grande-PB

  • McCormack JE, Zellmer AJ, Knowles LL (2009) Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation? Insights from tests with niche models. Evolution 64–5:1231–1244. https://doi.org/10.1111/j.1558-5646.2009.00900.x

    Article  Google Scholar 

  • Medeiros MCMP, Guisan A, Lohmann LG (2015) Climate niche conservatism does not explain restricted distribution patterns in Tynanthus (Bignonieae, Bignoniaceae). Bot J Linnean Soc 179:95–109

    Article  Google Scholar 

  • Nobre CA, Sampaio G, Salazar L (2007) Mudanças Climáticas e Amazônia. Cienc Cult 59:22–27

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O’Hara RB, Simpson GL, Solymos P, Stevenes MHH, Wagner H (2019) Vegan: community ecology package. R package version 2.5-5. http://CRAN.Rproject.org/package=vegan

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeog 34:102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x

    Article  Google Scholar 

  • Peters JL (1951) Check-list of birds of the world, vol VII. Museum of Comparative Zoology, Cambridge, MA

    Google Scholar 

  • Peterson AT, Soberon J, Sanchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285(5431):1265–1267. https://doi.org/10.1126/science.285.5431.1265

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography 31:272–278. https://doi.org/10.1111/j.2007.0906-7590.05378.x

    Article  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluations. Ecography 31:161–175. https://doi.org/10.1111/j.2007.0906-7590.05203.x

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Prado DE, Gibbs PE (1993) Patterns of species distributions in the dry seasonal forests of South America. Ann Missouri Bot Gard 80:902–927

    Article  Google Scholar 

  • Raxworthy C, Martinez-Meyer E, Horning N, Nussbaum R, Schneider G, Ortega-Huerta M, Peterson A (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841. https://doi.org/10.1038/nature02205

    Article  CAS  PubMed  Google Scholar 

  • Schoener TW (1970) Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51:408–418

    Article  Google Scholar 

  • Servant M, Maley J, Turcq B, Absy ML, Brenac P, Fournier M, Ledru MP (1993) Tropical forest changes during the late quaternary in African and South American lowlands. Glob Planet Change 7:25–40

    Article  Google Scholar 

  • Smith BT, Bryson RW, Houston DD, Klicka J (2012) An asymmetry in niche conservatism contributes to the latitudinal species diversity gradient in New World vertebrates. Ecol Lett 15:1218–1225

    Article  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10. https://doi.org/10.17161/bi.v2i0.4

    Article  Google Scholar 

  • Sorenson MD, Ast JC, Dimcheff DE, Yuri T, Mindell DP (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12:105–114

    Article  CAS  PubMed  Google Scholar 

  • Stager M, Pollock HS, Benham PM, Sly ND, Brawn JD, Cheviron ZA (2015) Disentangling environmental drivers of metabolic flexibility in birds: the importance of temperature extremes versus temperature variability. Ecography 39:787–795

    Article  Google Scholar 

  • Urbina-Cardona JN, Loyola RD (2008) Applying niche-based models to predict endangered-hylid potential distributions: are Neotropical protected areas effective enough? Trop Conserv Sci 1(4):417–445. https://doi.org/10.1177/194008290800100408

    Article  Google Scholar 

  • Warren DL, Glor REG, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62–11:2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x

    Article  Google Scholar 

  • Wiens JJ, Ackerly DD, Allen AP, Anacker BL, Buckley LB, Cornell HV, Damschen EI, Davies TJ, Grytnes J, Harrison SP, Hawkins BA, Holt RD, Mccain CM, Stephens PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  PubMed  Google Scholar 

  • Zachos Z, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:5517 (p 686)

    Google Scholar 

  • Zimmer KJ, Isler ML (2003) Amazonian Streaked Antwren Myrmotherula multostriata. In: del Hoyo J, Elliott AE, Christie DA (eds) Handbook of the birds of the world, vol 8. Lynx Edicions, Barcelona

    Google Scholar 

Download references

Acknowledgements

We thank the curators and curatorial assistants of the bird collection of the Louisiana State University Museum of Natural Science for allowing us to study and sequence skins and tissues under their care. During data collection and analysis, Erasmo Andrade da Silva was supported by a master`s fellowship from Fundação do Amparo a Ciência e Tecnologia do estado de Pernambuco (FACEPE,IBPG-1346-2.04-15). A.A. is supported by grants from the Swedish Research Council (B0569601), the Swedish Foundation for Strategic Research, the Biodiversity and Ecosystems in a Changing Climate (BECC) programme, and a Wallenberg Academy Fellowship. Support to A.M.F’s research was provided by FACEPE (APQ-0641-2.04/18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre M. Fernandes.

Additional information

Communicated by J. T. Lifjeld.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, E.A., de Araujo, H.F.P., Aleixo, A. et al. The effects of climate change on the distribution of South American antbirds (Thamnophilus punctatus complex) as affected by niche divergences and contact zone interactions between species. J Ornithol 161, 229–241 (2020). https://doi.org/10.1007/s10336-019-01721-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-019-01721-3

Keywords

Navigation