Skip to main content
Log in

Quantitative T 2 measurement of a single voxel with arbitrary shape using pinwheel excitation and CPMG acquisition

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

The aim of this study is to present a new approach for making quantitative single-voxel T 2 measurements from an arbitrarily shaped region of interest (ROI), where the advantage of the signal-to-noise ratio (SNR) per unit time of the single-voxel approach over conventional imaging approach can be achieved.

Materials and methods

Two-dimensional (2D) spatially selective radiofrequency (RF) pulses are proposed in this work for T 2 measurements based on using interleaved spiral trajectories in excitation k-space (pinwheel excitation pulses), combined with a summed Carr–Purcell Meiboom–Gill (CPMG) echo acquisition. The technique is described and compared to standard multi-echo imaging methods, on a two-compartment water phantom and an excised brain tissue.

Results

The studies show good agreement between imaging and our method. The measured improvement factors of SNR per unit time of our single-voxel approach over imaging approach are close to the predicted values.

Conclusion

Measuring T 2 relaxation times from a selected ROI of arbitrary shape using a single-voxel rather than an imaging approach can increase the SNR per unit time, which is critical for dynamic T 2 or multi-component T 2 measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carr HY and Purcell EM (1954). Effects of diffusion on free precession in numclear magnetic resonacne experiments. Phys Rev 94: 630–638

    Article  CAS  Google Scholar 

  2. Meiboom S and Gill D (1958). Modified spin echo method for measuring nuclear relaxation times. Rev Sci Intrum 29: 688–691

    Article  CAS  Google Scholar 

  3. Does MD and Gore JC (2000). Rapid acquisition transverse relaxometric imaging. J Magn Reson 147(1): 116–120

    Article  CAS  PubMed  Google Scholar 

  4. Oh J, Han ET, Pelletier D and Nelson SJ (2006). Measurement of in vivo multi-component T2 relaxation times for brain tissue using multi-slice T2 prep at 1.5 and 3 T. Magn Reson Imaging 24(1): 33–43

    Article  PubMed  Google Scholar 

  5. Madler B, Mackay AL (2006) In-vivo 3D T2-relaxation measurements for quantitative myelin imaging. Imaging Myelin: formation, cestruction and repair; Vancouver, Canada, p 72

  6. Granot J (1986). Selected Volume Spectroscopy (SVS) and chemical-shift imaging. A comparison. J Magn Reson 66: 197–200

    CAS  Google Scholar 

  7. Graham SJ, Stanchev PL and Bronskill MJ (1996). Criteria for analysis of multicomponent tissue T-2 relaxation data. Magn Reson Med 35(3): 370–378

    CAS  PubMed  Google Scholar 

  8. Singh S, Rutt BK and Henkelman RM (1990). Projection presaturation: a fast and accurate technique of multidimensional spatial localization. J Magn Reson 87: 567–583

    CAS  Google Scholar 

  9. Ordidge RJ, Connelly A and Lohman JAB (1986). Image-selected in vivo spectroscopy (ISIS)—a new technique for spatially selective NMR-spectroscopy. J Magn Reson 66(2): 283–294

    CAS  Google Scholar 

  10. Frahm J, Merboldt KD and Hanicke W (1987). Localized proton spectroscopy using stimulated echoes. J Magn Reson 72(3): 502–508

    CAS  Google Scholar 

  11. Bottomley PA (1987). Spatial localization in NMR-spectroscopy in vivo. Ann N Y Acad Sci 508: 333–348

    Article  CAS  PubMed  Google Scholar 

  12. Saab G, Thompson RT, Marsh GD (1997) A technique for localized multicomponent T 2 measurement in skeletal muscle. In: Proceedings of the international society for magnetic resonance in medicine. Fifth Scientific Meeting and Exhibition, Vancouver, Canada, p 1372

  13. Saab G, Thompson RT and Marsh GD (1999). Multicomponent T 2 relaxation of in vivo skeletal muscle. Magn Reson Med 42: 150–157

    Article  CAS  PubMed  Google Scholar 

  14. Saab G, Thompson RT and Marsh GD (2000). Effects of exercise on muscle transverse relaxation determined by MR imaging and in vivo relaxometry. J Appl Physiol 88: 226–233

    CAS  PubMed  Google Scholar 

  15. Graham SJ and Bronskill MJ (1996). MR measurement of relative water content and multicomponent T-2 relaxation in human breast. Magn Reson Med 35(5): 706–715

    Article  CAS  PubMed  Google Scholar 

  16. Pauly J, Nishimura D and Macovski A (1989). A k-space analysis of small-tip-angle excitation. J Magn Reson 81(1): 43–56

    Google Scholar 

  17. Pauly J, Nishimura D and Macovski A (1989). A linear class of large-tip-angle selective excitation pulses. J Magn Reson 82(3): 571–587

    Google Scholar 

  18. Hardy CJ and Cline HE (1989). Spatial localization in 2 dimensions using NMR designer pulses. J Magn Reson 82(3): 647–654

    Google Scholar 

  19. Hardy CJ and Bottomley PA (1991). P-31 spectroscopic localization using pinwheel NMR excitation pulses. Magn Reson Med 17(2): 315–327

    Article  CAS  PubMed  Google Scholar 

  20. Qin Q, Gore JC, Does MD, Avison MJ and DeGraaf RA (2007). 2D Arbitrary shape selective excitation summed spectroscopy (ASSESS). Magn Reson Med 58(1): 19–26

    Article  CAS  PubMed  Google Scholar 

  21. Bornert P and Aldefeld B (1998). On spatially selective RF excitation and its analogy with spiral MR image acquisition. Magn Reson Mater Phy 7: 166–178

    CAS  Google Scholar 

  22. Rahmer J, Bornert P, Groen J and Bos C (2006). Three-dimensional radial ultrashort echo-time imaging with T-2 adapted sampling. Magn Reson Med 55(5): 1075–1082

    Article  PubMed  Google Scholar 

  23. Mao J, Mareci TH, Scott KN and Andrew ER (1986). Selective inversion radiofrequency pulses by optimal control. J Magn Reson 70: 310–318

    CAS  Google Scholar 

  24. Poon CS and Henkelman RM (1992). Practical T 2 quantitation for clinical-applications. J Magn Reson Imag 2(5): 541–553

    Article  CAS  Google Scholar 

  25. Whittall KP and Mackay AL (1989). Quantitative interpretation of NMR relaxation data. J Magn Reson 84(1): 134–152

    CAS  Google Scholar 

  26. D’Arceuil HE, Westmoreland S and Crespigny AJ (2007). An approach to high resolution diffusion tensor imaging in fixed primate brain. Neuroimage 35(2): 553–565

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Q., Gore, J.C., de Graaf, R.A. et al. Quantitative T 2 measurement of a single voxel with arbitrary shape using pinwheel excitation and CPMG acquisition. Magn Reson Mater Phy 20, 233–240 (2007). https://doi.org/10.1007/s10334-007-0088-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-007-0088-9

Keywords

Navigation