Skip to main content
Log in

A comparative psychophysical approach to visual perception in primates

  • Review Article
  • Special contributions to commemorate the 60th anniversary of Japanese primatology
  • Published:
Primates Aims and scope Submit manuscript

Abstract

Studies on the visual processing of primates, which have well developed visual systems, provide essential information about the perceptual bases of their higher-order cognitive abilities. Although the mechanisms underlying visual processing are largely shared between human and nonhuman primates, differences have also been reported. In this article, we review psychophysical investigations comparing the basic visual processing that operates in human and nonhuman species, and discuss the future contributions potentially deriving from such comparative psychophysical approaches to primate minds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adkins JW, Fehmi LG, Lindsley DB (1969) Perceptual discrimination in monkeys: retroactive visual masking. Physiol Behav 4:255–259

    Google Scholar 

  • Barbet I, Fagot J (2002) Perception of the corridor illusion by baboons (Papio papio). Behav Brain Res 132:111–115

    PubMed  Google Scholar 

  • Baylor DA, Nunn BJ, Schnapf JL (1987) Spectral sensitivity of cones of the monkey Macaca fascicularis. J Physiol 390:145–160

    PubMed  CAS  Google Scholar 

  • Berlin B, Kay P (1969) Basic color terms: their universality and evolution. University of California Press, Berkeley

    Google Scholar 

  • Blake R, Turner LM, Smoski MJ, Pozdol SL, Stone WL (2003) Visual recognition of biological motion is impaired in children with autism. Psychol Sci 14:151–157

    PubMed  Google Scholar 

  • Breitmeyer BG, Öğmen H (2006) Visual masking: Time slices through conscious and unconscious vision. Oxford University Press, New York

    Google Scholar 

  • Bridgeman B (1980) Temporal response characteristics of cells in monkey striate cortex measured with metacontrast masking and brightness discrimination. Brain Res 196:347–364

    PubMed  CAS  Google Scholar 

  • Changizi MA, Zhang Q, Shimojo S (2006) Bare skin, blood and the evolution of primate colour vision. Biol Lett 2:217–221

    PubMed  Google Scholar 

  • Cowey A, Ellis CM (1967) Visual acuity of rhesus and squirrel monkeys. J Comp Physiol Psychol 64:80–84

    PubMed  CAS  Google Scholar 

  • Davidoff J, Davies I, Roberson D (1999) Colour categories in a stone-age tribe. Nature 398:203–204

    PubMed  CAS  Google Scholar 

  • De Valois RL, Morgan HC (1974) Psychophysical studies of monkey vision. II. Squirrel monkey wavelentgh and saturation discrimination. Vision Res 14:69–73

    PubMed  Google Scholar 

  • De Valois RL, Morgan H, Snodderly DM (1974a) Psychophysical studies of monkey vision. III. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Res 14:75–81

    PubMed  Google Scholar 

  • De Valois RL, Morgan HC, Polson MC, Hull EM (1974b) Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. Vision Res 14:53–67

    PubMed  Google Scholar 

  • De Weerd P, Desimone R, Ungerleider LG (1996) Cue-dependent deficits in grating orientation discrimination after V4 lesions in macaques. Visual Neurosci 13:529–538

    Google Scholar 

  • Dominy NJ, Lucas PW (2001) Ecological importance of trichromatic vision to primates. Nature 410:363–366

    PubMed  CAS  Google Scholar 

  • Ejima Y, Takahashi S, Yamamoto H, Fukunaga M, Tanaka C, Ebisu T, Umeda M (2003) Interindividual and interspecies variations of the extrastriate visual cortex. Neuroreport 14:1579–1583

    PubMed  Google Scholar 

  • Essock SM (1977) Color perception and color classification. In: Rumbaugh DM (ed) Language learning by a chimpanzee: the Lana project. Academic Press, New York, pp 207–224

    Google Scholar 

  • Fagot J, Deruelle C (1997) Processing of global and local visual information and hemispheric specialization in humans (Homo sapiens) and baboons (Papio papio). J Exp Psychol Hum Percept Perform 23:429–442

    PubMed  CAS  Google Scholar 

  • Fagot J, Tomonaga M (1999) Global and local processing in humans (Homo sapiens) and chimpanzees (Pan troglocytes): use of a visual search task with compound stimuli. J Comp Psychol 113:3–12

    Google Scholar 

  • Fagot J, Goldstein J, Davidoff J, Pickering A (2006) Cross-species differences in color categorization. Psychon Bull Rev 13:275–280

    PubMed  Google Scholar 

  • Fernandez AA, Morris MR (2007) Sexual selection and trichromatic color vision in primates: statistical support for the preexisting-bias hypothesis. Am Nat 170:10–20

    PubMed  Google Scholar 

  • Fujita K (1993) Development of visual preference for closely related species by infant and juvenile macaques with restricted social experience. Primates 34:141–150

    Google Scholar 

  • Fujita K (1997) Perception of the Ponzo illusion by rhesus monkeys, chimpanzees, and humans: Similarity and difference in the three primate species. Percept Psychophys 59:284–292

    PubMed  CAS  Google Scholar 

  • Fujita K, Giersch A (2005) What perceptual rules do capuchin monkeys (Cebus apella) follow in completing partly occluded figures? J Exp Psychol-Anim Behav Process 31:387–398

    PubMed  Google Scholar 

  • Gallese V (2007) Before and below ‘theory of mind’: embodied simulation and the neural correlates of social cognition. Philos Trans R Soc Lond B Biol Sci 362:659–669

    PubMed  Google Scholar 

  • Ghazanfar AA, Santos LR (2004) Primate brains in the wild: the sensory bases for social interactions. Nat Rev Neurosci 5:603–616

    PubMed  CAS  Google Scholar 

  • Grether WF (1940) A comparison of human and chimpanzee spectral hue discrimination curves. J Exp Psychol 26:394–403

    Google Scholar 

  • Grether WF (1941) Comparative visual acuity thresholds in terms of retinal image widths. J Comp Psychol 31:23–33

    Google Scholar 

  • Grether WF (1942) The magnitude of simultaneous color contrast and simultaneous brightness contrast for chimpanzee and man. J Exp Psychol 30:69–83

    Google Scholar 

  • Happe F, Frith U (2006) The weak coherence account: detail-focused cognitive style in autism spectrum disorders. J Autism Dev Disord 36:5–25

    PubMed  Google Scholar 

  • Harwerth RS, Smith EL 3rd, DeSantis L (1993) Behavioral perimetry in monkeys. Invest Ophthalmol Vis Sci 34:31–40

    PubMed  CAS  Google Scholar 

  • Hecht S, Shlaer S (1936) Intermittent stimulation by light. J Gen Physiol 19:965–977

    PubMed  CAS  Google Scholar 

  • Herrmann E, Call J, Hernandez-Lloreda MV, Hare B, Tomasello M (2007) Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317:1360–1366

    PubMed  CAS  Google Scholar 

  • Hochstein S, Ahissar M (2002) View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36:791–804

    PubMed  CAS  Google Scholar 

  • Hommel B, Musseler J, Aschersleben G, Prinz W (2001) The Theory of Event Coding (TEC): a framework for perception and action planning. Behav Brain Sci 24:849–878

    PubMed  CAS  Google Scholar 

  • Hopf JM, Luck SJ, Boelmans K, Schoenfeld MA, Boehler CN, Rieger J, Heinze HJ (2006) The neural site of attention matches the spatial scale of perception. J Neurosci 26:3532–3540

    PubMed  CAS  Google Scholar 

  • Hopkins WD (1997) Hemispheric specialization for local and global processing of hierarchical visual stimuli in chimpanzees (Pan troglodytes). Neuropsychologia 35:343–348

    PubMed  CAS  Google Scholar 

  • Hopkins WD, Washburn DA (2002) Matching visual stimuli on the basis of global and local features by chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). Anim Cogn 5(1):27–31

    PubMed  Google Scholar 

  • Huang X, MacEvoy SP, Paradiso MA (2002) Perception of brightness and brightness illusions in the macaque monkey. J Neurosci 22:9618–9625

    PubMed  CAS  Google Scholar 

  • Ibbotson RE, Hunt DM, Bowmaker JK, Mollon JD (1992) Sequence divergence and copy number of the middle- and long-wave photopigment genes in Old World monkeys. Proc R Soc Lond B Biol Sci 247:145–154

    CAS  Google Scholar 

  • Imura T, Tomonaga M, Yagi A (2008) The effects of linear perspective on relative size discrimination in chimpanzees (Pan troglodytes) and humans (Homo sapiens). Behav Processes 77:306–312

    PubMed  Google Scholar 

  • Ishii H, Ullmer B (1997) Tangible bits: towards seamless interfaces between people, bits, and atoms. In: SIGCHI conference on human factors in computing systems. ACM Press, Atlanta, pp 234–241

  • Jeannerod M (2003) The mechanism of self-recognition in humans. Behav Brain Res 142:1–15

    PubMed  Google Scholar 

  • Kalloniatis M, Harwerth RS (1991) Effects of chromatic adaptation on opponent interactions in monkey increment-threshold spectral-sensitivity functions. J Opt Soc Am A 8:1818–1831

    PubMed  CAS  Google Scholar 

  • Kanizsa G (1979) Organization in vision. Praeger, New York

    Google Scholar 

  • Kimura H, Uchiyama T, Yoshikawa H (2006) Laser produced 3D display in the air. In: ACM SIGGRAPH 2006 emerging technologies. ACM Press, Boston, p 20

  • Klatzky RL, MacWhinney B, Behrmann M (eds) (2008) Embodiment, ego-space, and action. Psychology Press, New York

    Google Scholar 

  • Knoblich G, Thornton IM, Grosjean M, Shiffrar M (2006) Human body perception from the inside out. Oxford University Press, New York

    Google Scholar 

  • Koffka K (1935) Principles of Gestalt psychology. Harcourt Brace, New York

    Google Scholar 

  • Logothetis NK, Guggenberger H, Peled S, Pauls J (1999) Functional imaging of the monkey brain. Nat Neurosci 2:555–562

    PubMed  CAS  Google Scholar 

  • Macknik SL (2006) Visual masking approaches to visual awareness. In: Martinez-Conde S, Macknik SL, Martinez L, Alonso JM, Tse PU (eds) Visual perception (part II). Fundamentals of awareness, multi-sensory integration and high-order perception, vol 155. Elsevier, Amsterdam, pp 177–215

    Google Scholar 

  • Martin-Malivel J, Mangini MC, Fagot J, Biederman I (2006) Do humans and baboons use the same information when categorizing human and baboon faces? Psychol Sci 17:599–607

    PubMed  Google Scholar 

  • Matsuno T, Tomonaga M (2006a) Measurement of contrast thresholds of chimpanzees using a Parameter Estimation by Sequential Testing (PEST) procedure. Jpn J Psychon Sci 25:115–116

    Google Scholar 

  • Matsuno T, Tomonaga M (2006b) Visual search for moving and stationary items in chimpanzees (Pan troglodytes) and humans (Homo sapiens). Behav Brain Res 172:219–232

    PubMed  Google Scholar 

  • Matsuno T, Tomonaga M (2007) Global and local visual processing by chimpanzees (Pan troglodytes). Jpn J Psychon Sci 25:281–282

    Google Scholar 

  • Matsuno T, Tomonaga M (2008) Temporal characteristics of visibility in chimpanzees (Pan troglodytes) and humans (Homo sapiens) assessed using a visual masking paradigm. Perception 37:1258–1268

    PubMed  Google Scholar 

  • Matsuno T, Kawai N, Matsuzawa T (2004) Color classification by chimpanzees (Pan troglodytes) in a matching-to-sample task. Behav Brain Res 148:157–165

    PubMed  Google Scholar 

  • Matsuno T, Kawai N, Matsuzawa T (2006) Color recognition in chimpanzees (Pan troglodytes). In: Matsuzawa T, Tomonaga M, Tanaka M (eds) Cognitive development in chimpanzees. Springer, Tokyo, pp 317–329

    Google Scholar 

  • Matsuzawa T (1985) Colour naming and classification in a chimpanzee (Pan troglodytes). J Hum Evol 14:283–291

    Google Scholar 

  • Matsuzawa T (1990) Form perception and visual acuity in a chimpanzee. Folia Primatol 55:24–32

    PubMed  CAS  Google Scholar 

  • Melin AD, Fedigan LM, Hiramatsu C, Sendall CL, Kawamura S (2007) Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus. Anim Behav 73:205–214

    Google Scholar 

  • Merigan WH (1980) Temporal modulation sensitivity of macaque monkeys. Vision Res 20:953–959

    PubMed  CAS  Google Scholar 

  • Mishkin M, Weiskrantz L (1959) Effects of cortical lesions in monkeys on critical flicker frequency. J Comp Physiol Psychol 52:660–666

    PubMed  CAS  Google Scholar 

  • Mollon JD, Bowmaker JK, Jacobs GH (1984) Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proc R Soc Lond B Biol Sci 222:373–399

    Article  PubMed  CAS  Google Scholar 

  • Navon D (1977) Forest before trees: the precedence of global features in visual perception. Cognit Psychol 9:353–383

    Google Scholar 

  • Neiworth JJ, Gleichman AJ, Olinick AS, Lamp KE (2006) Global and local processing in adult humans (Homo sapiens), 5-year-old children (Homo sapiens), and adult cotton-top tamarins (Saguinus oedipus). J Comp Psychol 120:323–330

    PubMed  Google Scholar 

  • Nieder A (2002) Seeing more than meets the eye: processing of illusory contours in animals. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188:249–260

    PubMed  CAS  Google Scholar 

  • Nielsen KJ, Logothetis NK, Rainer G (2006) Discrimination strategies of humans and rhesus monkeys for complex visual displays. Curr Biol 16:814–820

    PubMed  CAS  Google Scholar 

  • Oliva A, Torralba A (2006) Building the gist of a scene: the role of global image features in recognition. In: Martinez-Conde S, Macknik SL, Martinez L, Alonso JM, Tse PU (eds) Visual perception (Part II). Fundamentals of awareness, multi-sensory integration and high-order perception, vol 155. Elsevier, Amsterdam, pp 23–36

    Google Scholar 

  • Onishi A, Koike S, Ida M, Imai H, Shichida Y, Takesaka O, Mikami A, Goto S, Suyobroto B, Kitahara K, Yamamori T (1999) Dichromatism in macaque monkeys. Nature 402:139–140

    PubMed  CAS  Google Scholar 

  • Parr LA, Heintz M, Akamagwuna U (2006) Three studies on configural face processing by chimpanzees. Brain Cogn 62:30–42

    PubMed  Google Scholar 

  • Parron C, Fagot J (2007) Comparison of grouping abilities in humans (Homo sapiens) and baboons (Papio papio) with the Ebbinghaus illusion. J Comp Psychol 121:405–411

    PubMed  Google Scholar 

  • Parron C, Deruelle C, Fagot J (2007) Processing of biological motion point-light displays by baboons (Papio papio). J Exp Psychol Anim Behav Process 33:381–391

    PubMed  Google Scholar 

  • Penn DC, Holyoak KJ, Povinelli DJ (2008) Darwin’s mistake: explaining the discontinuity between human and nonhuman minds. Behav Brain Sci 31:109–130

    PubMed  Google Scholar 

  • Preston SD, de Waal FB (2002) Empathy: its ultimate and proximate bases. Behav Brain Sci 25:1–20

    PubMed  Google Scholar 

  • Preuss TM, Qi HX, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci USA 96:11601–11606

    PubMed  CAS  Google Scholar 

  • Reed CL, Stone VE, McGoldrick JE (2006) Not just posturing: configural processing of the human body. In: Knoblich G, Thornton IM, Grosjean M, Shiffrar M (eds) Human body perception from the inside out. Oxford Univesity Press, New York, pp 229–258

    Google Scholar 

  • Repp BH, Knoblich G (2007) Toward a psychophysics of agency: detecting gain and loss of control over auditory action effects. J Exp Psychol Hum Percept Perform 33:469–482

    PubMed  Google Scholar 

  • Saito A, Mikami A, Kawamura S, Ueno Y, Hiramatsu C, Widayati KA, Suryobroto B, Teramoto M, Mori Y, Nagano K, Fujita K, Kuroshima H, Hasegawa T (2005) Advantage of dichromats over trichromats in discrimination of color-camouflaged stimuli in nonhuman primates. Am J Primatol 67:425–436

    PubMed  Google Scholar 

  • Sandell JH, Gross CG, Bornstein MH (1979) Color categories in macaques. J Comp Physiol Psychol 93:626–635

    PubMed  CAS  Google Scholar 

  • Sasaki Y (2007) Processing local signals into global patterns. Curr Opin Neurobiol 17:132–139

    PubMed  CAS  Google Scholar 

  • Sasaoka M, Hara H, Nakamura K (2005) Comparison between monkey and human visual fields using a personal computer system. Behav Brain Res 161:18–30

    PubMed  Google Scholar 

  • Sato A, Yasuda A (2005) Illusion of sense of self-agency: discrepancy between the predicted and actual sensory consequences of actions modulates the sense of self-agency, but not the sense of self-ownership. Cognition 94:241–255

    PubMed  Google Scholar 

  • Sato A, Kanazawa S, Fujita K (1997) Perception of object unity in a chimpanzee (Pan troglodytes). Jpn Psychol Res 39:191–199

    Google Scholar 

  • Scholl BJ, Tremoulet PD (2000) Perceptual causality and animacy. Trends Cogn Sci 4:299–309

    PubMed  Google Scholar 

  • Sebanz N, Knoblich G, Prinz W (2005) How two share a task: corepresenting stimulus-response mappings. J Exp Psychol Hum Percept Perform 31:1234–1246

    PubMed  Google Scholar 

  • Sereno MI, Tootell RB (2005) From monkeys to humans: what do we now know about brain homologies? Curr Opin Neurobiol 15:135–144

    PubMed  CAS  Google Scholar 

  • Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Ann Rev Neurosci 24:1193–1216

    PubMed  CAS  Google Scholar 

  • Spence KW (1934) Visual acuity and its relation to brightness in chimpanzee and man. J Comp Psychol 18:333–361

    Google Scholar 

  • Spinozzi G, De Lillo C, Salvi V (2005) Local advantage in the visual processing of hierarchical stimuli following manipulations of stimulus size and element numerosity in monkeys (Cebus apella). Behav Brain Res 166:45–54

    PubMed  Google Scholar 

  • Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:245–251

    CAS  Google Scholar 

  • Suganuma E, Pessoa VF, Monge-Fuentes V, Castro BM, Tavares MC (2007) Perception of the Muller-Lyer illusion in capuchin monkeys (Cebus apella). Behav Brain Res 182:67–72

    PubMed  Google Scholar 

  • Sugita Y (1999) Grouping of image fragments in primary visual cortex. Nature 401:269–272

    PubMed  CAS  Google Scholar 

  • Sumner P, Mollon JD (2000a) Catarrhine photopigments are optimized for detecting targets against a foliage background. J Exp Biol 203:1963–1986

    PubMed  CAS  Google Scholar 

  • Sumner P, Mollon JD (2000b) Chromaticity as a signal of ripeness in fruits taken by primates. J Exp Biol 203:1987–2000

    PubMed  CAS  Google Scholar 

  • Tanaka H, Fujita I (2000) Global and local processing of visual patterns in macaque monkeys. Neuroreport 11:2881–2884

    Article  PubMed  CAS  Google Scholar 

  • Tomonaga M (2007a) Is chimpanzee (Pan troglodytes) spatial attention reflexively triggered by gaze cue? J Comp Psychol 121:156–170

    PubMed  Google Scholar 

  • Tomonaga M (2007b) Visual search for orientation of faces by a chimpanzee (Pan troglodytes): face-specific upright superiority and the role of facial configural properties. Primates 48:1–12

    PubMed  Google Scholar 

  • Tootell RB, Tsao D, Vanduffel W (2003) Neuroimaging weighs in: humans meet macaques in “primate” visual cortex. J Neurosci 23:3981–3989

    PubMed  CAS  Google Scholar 

  • Tsakiris M, Schutz-Bosbach S, Gallagher S (2007) On agency and body-ownership: phenomenological and neurocognitive reflections. Conscious Cognit 16:645–660

    Google Scholar 

  • Vandenbroucke MW, Scholte HS, Engeland HV, Lamme VA, Kemner C (2008) A new approach to the study of detail perception in Autism Spectrum Disorder (ASD): Investigating visual feedforward, horizontal and feedback processing. Vision Res (in press)

  • Wang B, Zhou TG, Zhuo Y, Chen L (2007) Global topological dominance in the left hemisphere. Proc Natl Acad Sci USA 104:21014–21019

    PubMed  CAS  Google Scholar 

  • Weinstein B, Grether WF (1940) A comparison of visual acuity in the rhesus monkey and man. J Comp Psychol 30:187–195

    Google Scholar 

  • Xu Y, Chun MM (2007) Visual grouping in human parietal cortex. Proc Natl Acad Sci USA 104:18766–18771

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The writings of this article was supported by Grants-in-Aid for Scientific Research (17300085) and for the Global COE Program “Revitalizing Education for Dynamic Hearts and Minds” from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and also supported by Research Fellowship (19/9127) from the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toyomi Matsuno.

About this article

Cite this article

Matsuno, T., Fujita, K. A comparative psychophysical approach to visual perception in primates. Primates 50, 121–130 (2009). https://doi.org/10.1007/s10329-008-0128-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-008-0128-8

Keywords

Navigation