Skip to main content
Log in

Vagal afferent controls of feeding: a possible role for gastrointestinal BDNF

  • Review Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Introduction

Vagal gastrointestinal (GI) afferents do not appear to contribute to long-term controls of feeding, despite downstream connections that could support such a role. This view is largely attributable to a lack of evidence for long-term effects, especially the failure of vagal afferent lesions to produce hyperphagia or obesity.

Aims

Here, the possibility is evaluated that “side effects” of vagal lesion methods resulting largely from complexities of vagal organization would probably suppress long-term effects. Criteria based on knowledge of vagal organization were utilized to critique and compare vagal lesion methods and to interpret their effects on GI function, feeding and body weight.

Results and conclusions

This analysis suggested that it was premature to eliminate a long-term vagal GI afferent role based on the effects of these lesions and highlighted aspects of vagal organization that must be addressed to reduce the problematic side effects of vagal lesions. The potential of “genetic” lesions that alter vagal sensory development to address these aspects, examination of the feasibility of this approach, and the properties of brain-derived neurotrophic factor (BDNF) that made it an attractive candidate for application of this approach are described. BDNF knockout from GI smooth muscle unexpectedly demonstrated substantial overeating and weight gain associated with increased meal size and frequency. The decay of eating rate during a scheduled meal was also reduced. However, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus, suggesting that the effect on eating rate was due to augmentation of GI reflexes by vagal afferents or other neural systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Abubakr A, Wambacq I (2008) Long-term outcome of vagus nerve stimulation therapy in patients with refractory epilepsy. J Clin Neurosci 15:127–129

    Article  PubMed  Google Scholar 

  2. Amar AP, Heck CN, Levy ML, Smith T, DeGiorgio CM, Oviedo S, Apuzzo ML (1998) An institutional experience with cervical vagus nerve trunk stimulation for medically refractory epilepsy: rationale, technique, and outcome. Neurosurgery 43:1265–1276 (discussion 1276–1280)

    PubMed  CAS  Google Scholar 

  3. Andresen MC, Yang MY (1990) Non-NMDA receptors mediate sensory afferent synaptic transmission in medial nucleus tractus solitarius. Am J Physiol 259:H1307–H1311

    PubMed  CAS  Google Scholar 

  4. Berthoud HR (2008) The vagus nerve, food intake and obesity. Regul Pept 149:15–25

    Article  PubMed  CAS  Google Scholar 

  5. Berthoud HR, Kressel M, Raybould HE, Neuhuber WL (1995) Vagal sensors in the rat duodenal mucosa: distribution and structure as revealed by in vivo DiI-tracing. Anat Embryol (Berl) 191:203–212

    Article  CAS  Google Scholar 

  6. Berthoud HR, Powley TL (1992) Vagal afferent innervation of the rat fundic stomach: morphological characterization of the gastric tension receptor. J Comp Neurol 319:261–276

    Article  PubMed  CAS  Google Scholar 

  7. Bi S, Ladenheim EE, Schwartz GJ, Moran TH (2001) A role for NPY overexpression in the dorsomedial hypothalamus in hyperphagia and obesity of OLETF rats. Am J Physiol Regul Integr Comp Physiol 281:R254–R260

    PubMed  CAS  Google Scholar 

  8. Bi S, Scott KA, Kopin AS, Moran TH (2004) Differential roles for cholecystokinin a receptors in energy balance in rats and mice. Endocrinology 145:3873–3880

    Article  PubMed  CAS  Google Scholar 

  9. Biddinger JE, Fox EA (2010) Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition. Physiol Behav 101:184–191

    Article  PubMed  CAS  Google Scholar 

  10. Biddinger JE, Fox EA (2010b) Meal pattern and microstructure changes underlying hyperphagia and obesity in mice with smooth muscle-specific brain-derived neurotrophic factor knockout. Soc Neurosci (abstr no. 391.10)

  11. Blat S, Guerin S, Chauvin A, Bobillier E, Le Cloirec J, Bourguet P, Malbert CH (2001) Role of vagal innervation on intragastric distribution and emptying of liquid and semisolid meals in conscious pigs. Neurogastroenterol Motil 13:73–80

    Article  PubMed  CAS  Google Scholar 

  12. Byerly MS, Fox EA (2006) High-fat hyperphagia in neurotrophin-4 deficient mice reveals potential role of vagal intestinal sensory innervation in long-term controls of food intake. Neurosci Lett 400:240–245

    Article  PubMed  CAS  Google Scholar 

  13. Carobi C (1996) A quantitative investigation of the effects of neonatal capsaicin treatment on vagal afferent neurons in the rat. Cell Tissue Res 283:305–311

    Article  PubMed  CAS  Google Scholar 

  14. Carroll P, Lewin GR, Koltzenburg M, Toyka KV, Thoenen H (1998) A role for BDNF in mechanosensation. Nat Neurosci 1:42–46

    Article  PubMed  CAS  Google Scholar 

  15. Castelucci P, Robbins HL, Furness JB (2003) P2X(2) purine receptor immunoreactivity of intraganglionic laminar endings in the mouse gastrointestinal tract. Cell Tissue Res 312:167–174

    PubMed  CAS  Google Scholar 

  16. Castonguay TW, Bellinger LL (1987) Capsaicin and its effects upon meal patterns, and glucagon and epinephrine suppression of food intake. Physiol Behav 40:337–342

    Article  PubMed  CAS  Google Scholar 

  17. Chavez M, Kelly L, York DA, Berthoud HR (1997) Chemical lesion of visceral afferents causes transient overconsumption of unfamiliar high-fat diets in rats. Am J Physiol 272:R1657–R1663

    PubMed  CAS  Google Scholar 

  18. Chi MM, Fan G, Fox EA (2004) Increased short-term food satiation and sensitivity to cholecystokinin in neurotrophin-4 knock-in mice. Am J Physiol Regul Integr Comp Physiol 287:R1044–R1053

    Article  PubMed  CAS  Google Scholar 

  19. Chi MM, Powley TL (2003) c-Kit mutant mouse behavioral phenotype: altered meal patterns and CCK sensitivity but normal daily food intake and body weight. Am J Physiol Regul Integr Comp Physiol 285:R1170–R1183

    PubMed  CAS  Google Scholar 

  20. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S (1997) Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. J Neurosci 17:2295–2313

    PubMed  CAS  Google Scholar 

  21. Cordeira JW, Frank L, Sena-Esteves M, Pothos EN, Rios M (2010) Brain-derived neurotrophic factor regulates hedonic feeding by acting on the mesolimbic dopamine system. J Neurosci 30:2533–2541

    Article  PubMed  CAS  Google Scholar 

  22. Davis JD (1998) A model for the control of ingestion—20 years later. In: Morrison AR, Fluharty SJ (eds) Progress in psychobiology and physiological psychology, vol 17. Academic Press, San Diego, pp 127–173

    Google Scholar 

  23. Davison JS, Clarke GD (1988) Mechanical properties and sensitivity to CCK of vagal gastric slowly adapting mechanoreceptors. Am J Physiol 255:G55–G61

    PubMed  CAS  Google Scholar 

  24. Dethier VG, Bodenstein D (1958) Hunger in the blowfly. Zeitschrift fur Tierpsychol 15:129–140

    Article  Google Scholar 

  25. Emond M, Schwartz GJ, Moran TH (2001) Meal-related stimuli differentially induce c-Fos activation in the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 280:R1315–R1321

    PubMed  CAS  Google Scholar 

  26. Erickson JT, Conover JC, Borday V, Champagnat J, Barbacid M, Yancopoulos G, Katz DM (1996) Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. J Neurosci 16:5361–5371

    PubMed  CAS  Google Scholar 

  27. Ernfors P, Merlio JP, Persson H (1992) Cells expressing messenger-rna for neurotrophins and their receptors during embryonic rat development. Eur J Neurosci 4:1140–1158

    Article  PubMed  Google Scholar 

  28. Faris PL, Hofbauer RD, Daughters R, Vandenlangenberg E, Iversen L, Goodale RL, Maxwell R, Eckert ED, Hartman BK (2008) De-stabilization of the positive vago-vagal reflex in bulimia nervosa. Physiol Behav 94:136–153

    Article  PubMed  CAS  Google Scholar 

  29. Ferrari B, Arnold M, Carr RD, Langhans W, Pacini G, Bodvarsdottir TB, Gram DX (2005) Subdiaphragmatic vagal deafferentation affects body weight gain and glucose metabolism in obese male Zucker (fa/fa) rats. Am J Physiol Regul Integr Comp Physiol 289:R1027–R1034

    Article  PubMed  CAS  Google Scholar 

  30. Fox EA (2006) A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake. Auton Neurosci 126–127:9–29

    Article  PubMed  Google Scholar 

  31. Fox EA, Biddinger JE, Jones KR, Worman A, McAdams J (2010a) Smooth muscle-specific knockout of brain-derived neurotrophic factor results in hyperphagia and obesity. Soc Neurosci (abstr no. 391.7)

  32. Fox EA, Biddinger JE (2012) Early postnatal overnutrition: potential roles of gastrointestinal vagal afferents and brain-derived neurotrophic factor. Physiol Behav 106:400–412

    Article  PubMed  CAS  Google Scholar 

  33. Fox EA, Byerly MS (2004) A mechanism underlying mature-onset obesity: evidence from the hyperphagic phenotype of brain-derived neurotrophic factor mutants. Am J Physiol Regul Integr Comp Physiol 286:R994–R1004

    Article  PubMed  CAS  Google Scholar 

  34. Fox EA, McAdams J (2010) Smooth-muscle-specific expression of neurotrophin-3 in mouse embryonic and neonatal gastrointestinal tract. Cell Tissue Res 340:267–286

    Article  PubMed  CAS  Google Scholar 

  35. Fox EA, Murphy MC (2008) Factors regulating vagal sensory development: potential role in obesities of developmental origin. Physiol Behav 94:90–104

    Article  PubMed  CAS  Google Scholar 

  36. Fox EA, Phillips RJ, Baronowsky EA, Byerly MS, Jones S, Powley TL (2001) Neurotrophin-4 deficient mice have a loss of vagal intraganglionic mechanoreceptors from the small intestine and a disruption of short-term satiety. J Neurosci 21:8602–8615

    PubMed  CAS  Google Scholar 

  37. Fox EA, Phillips RJ, Byerly MS, Baronowsky EA, Chi MM, Powley TL (2002) Selective loss of vagal intramuscular mechanoreceptors in mice mutant for steel factor, the c-Kit receptor ligand. Anat Embryol 205:325–342

    Article  PubMed  Google Scholar 

  38. Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL (2000) Vagal afferent innervation of smooth muscle in the stomach and duodenum of the mouse: morphology and topography. J Comp Neurol 428:558–576

    Article  PubMed  CAS  Google Scholar 

  39. Fox EA, Phillips RJ, Martinson FA, Baronowsky EA, Powley TL (2001) C-Kit mutant mice have a selective loss of vagal intramuscular mechanoreceptors that innervate gastric smooth muscle. Anat Embryol 204:11–26

    Article  PubMed  CAS  Google Scholar 

  40. Garami A, Balasko M, Szekely M, Solymar M, Petervari E (2010) Fasting hypometabolism and refeeding hyperphagia in rats: effects of capsaicin desensitization of the abdominal vagus. Eur J Pharmacol 644:61–66

    Article  PubMed  CAS  Google Scholar 

  41. Gelperin A (1971) Regulation of feeding. Annu Rev Entomol 16:365–378

    Article  Google Scholar 

  42. George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z, Husain MM, Lisanby S, Burt T, Goldman J, Ballenger JC (2000) Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiatry 47:287–295

    Article  PubMed  CAS  Google Scholar 

  43. Glatzle J, Wang Y, Adelson DW, Kalogeris TJ, Zittel TT, Tso P, Wei JY, Raybould HE (2003) Chylomicron components activate duodenal vagal afferents via a cholecystokinin A receptor-mediated pathway to inhibit gastric motor function in the rat. J Physiol 550:657–664

    Article  PubMed  CAS  Google Scholar 

  44. Gorski JA, Zeiler SR, Tamowski S, Jones KR (2003) Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J Neurosci 23:6856–6865

    PubMed  CAS  Google Scholar 

  45. Gray TS, Magnuson DJ (1987) Neuropeptide neuronal efferents from the bed nucleus of the stria terminalis and central amygdaloid nucleus to the dorsal vagal complex in the rat. J Comp Neurol 262:365–374

    Article  PubMed  CAS  Google Scholar 

  46. Hornby PJ (2001) Receptors and transmission in the brain-gut axis. II. Excitatory amino acid receptors in the brain-gut axis. Am J Physiol Gastrointest Liver Physiol 280:G1055–G1060

    PubMed  CAS  Google Scholar 

  47. Jahnberg T, Abrahamsson H, Jansson G, Martinson J (1977) Gastric relaxatory response to feeding before and after vagotomy. Scand J Gastroenterol 12:225–228

    PubMed  CAS  Google Scholar 

  48. Jones KR, Farinas I, Backus C, Reichardt LF (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76:989–999

    Article  PubMed  CAS  Google Scholar 

  49. Kanoski SE, Fortin SM, Arnold M, Grill HJ, Hayes MR (2011) Peripheral and central GLP-1 receptor populations mediate the anorectic effects of peripherally administered GLP-1 receptor agonists, liraglutide and exendin-4. Endocrinology 152:3103–3112

    Article  PubMed  CAS  Google Scholar 

  50. Kral JG, Paez W, Wolfe BM (2009) Vagal nerve function in obesity: therapeutic implications. World J Surg 33:1995–2006

    Article  PubMed  Google Scholar 

  51. Leonhardt M, Hrupka BJ, Langhans W (2004) Subdiaphragmatic vagal deafferentation fails to block the anorectic effect of hydroxycitrate. Physiol Behav 82:263–268

    Article  PubMed  CAS  Google Scholar 

  52. Lepore JJ, Cheng L, Min Lu M, Mericko PA, Morrisey EE, Parmacek MS (2005) High-efficiency somatic mutagenesis in smooth muscle cells and cardiac myocytes in SM22alpha-Cre transgenic mice. Genesis 41:179–184

    Article  PubMed  CAS  Google Scholar 

  53. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  54. Lommatzsch M, Braun A, Mannsfeldt A, Botchkarev VA, Botchkareva NV, Paus R, Fischer A, Lewin GR, Renz H (1999) Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Implications for paracrine and target-derived neurotrophic functions. Am J Pathol 155:1183–1193

    Article  PubMed  CAS  Google Scholar 

  55. Louis-Sylvestre J (1983) Validation of tests of completeness of vagotomy in rats. J Auton Nerv Syst 9:301–314

    Article  PubMed  CAS  Google Scholar 

  56. Matson CA, Reid DF, Cannon TA, Ritter RC (2000) Cholecystokinin and leptin act synergistically to reduce body weight. Am J Physiol Regul Integr Comp Physiol 278:R882–R890

    PubMed  CAS  Google Scholar 

  57. Matson CA, Reid DF, Ritter RC (2002) Daily CCK injection enhances reduction of body weight by chronic intracerebroventricular leptin infusion. Am J Physiol Regul Integr Comp Physiol 282:R1368–R1373

    PubMed  CAS  Google Scholar 

  58. Matson CA, Ritter RC (1999) Long-term CCK-leptin synergy suggests a role for CCK in the regulation of body weight. Am J Physiol 276:R1038–R1045

    PubMed  CAS  Google Scholar 

  59. Matthews MR, Cuello AC (1982) Substance P-immunoreactive peripheral branches of sensory neurons innervate guinea pig sympathetic neurons. Proc Natl Acad Sci USA 79:1668–1672

    Article  PubMed  CAS  Google Scholar 

  60. Mei N (1983) Recent studies on intestinal vagal afferent innervation. Functional implications. J Auton Nerv Syst 9:199–206

    Article  PubMed  CAS  Google Scholar 

  61. Melnyk A, Himms-Hagen J (1995) Resistance to aging-associated obesity in capsaicin-desensitized rats one year after treatment. Obes Res 3:337–344

    Article  PubMed  CAS  Google Scholar 

  62. Moran TH, Katz LF, Plata-Salaman CR, Schwartz GJ (1998) Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol 274:R618–R625

    PubMed  CAS  Google Scholar 

  63. Mordes JP, el Lozy M, Herrera MG, Silen W (1979) Effects of vagotomy with and without pyloroplasty on weight and food intake in rats. Am J Physiol 236:R61–R66

    PubMed  CAS  Google Scholar 

  64. Murphy MC, Fox EA (2010) Mice deficient in brain-derived neurotrophic factor have altered development of gastric vagal sensory innervation. J Comp Neurol 518:2934–2951

    Article  PubMed  CAS  Google Scholar 

  65. Neuhuber WL (1987) Sensory vagal innervation of the rat esophagus and cardia: a light and electron microscopic anterograde tracing study. J Auton Nerv Syst 20:243–255

    Article  PubMed  CAS  Google Scholar 

  66. Noble EE, Billington CJ, Kotz CM, Wang C (2011) The lighter side of BDNF. Am J Physiol Regul Integr Comp Physiol 300:R1053–R1069

    Article  PubMed  CAS  Google Scholar 

  67. Norgren R, Smith GP (1994) A method for selective section of vagal afferent or efferent axons in the rat. Am J Physiol 267:R1136–R1141

    PubMed  CAS  Google Scholar 

  68. Page AJ, Martin CM, Blackshaw LA (2002) Vagal mechanoreceptors and chemoreceptors in mouse stomach and esophagus. J Neurophysiol 87:2095–2103

    PubMed  CAS  Google Scholar 

  69. Phillips RJ, Baronowsky EA, Powley TL (2003) Long-term regeneration of abdominal vagus: efferents fail while afferents succeed. J Comp Neurol 455:222–237

    Article  PubMed  Google Scholar 

  70. Powley TL, Spaulding RA, Haglof SA (2011) Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. J Comp Neurol 519:644–660

    Article  PubMed  Google Scholar 

  71. Raybould HE, Glatzle J, Robin C, Meyer JH, Phan T, Wong H, Sternini C (2003) Expression of 5-HT3 receptors by extrinsic duodenal afferents contribute to intestinal inhibition of gastric emptying. Am J Physiol Gastrointest Liver Physiol 284:G367–G372

    PubMed  CAS  Google Scholar 

  72. Rinaman L (2010) Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 1350:18–34

    Article  PubMed  CAS  Google Scholar 

  73. Rinaman L, Baker EA, Hoffman GE, Stricker EM, Verbalis JG (1998) Medullary c-Fos activation in rats after ingestion of a satiating meal. Am J Physiol 275:R262–R268

    PubMed  CAS  Google Scholar 

  74. Ritter S, Dinh TT (1990) Capsaicin-induced neuronal degeneration in the brain and retina of preweanling rats. J Comp Neurol 296:447–461

    Article  PubMed  CAS  Google Scholar 

  75. Rogers RC, Hermann GE, Travagli RA (1999) Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat. J Physiol 514:369–383

    Article  PubMed  CAS  Google Scholar 

  76. Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, Nahas Z, Haines S, Simpson RK, Goodman R (2000) Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry 47:276–286

    Article  PubMed  CAS  Google Scholar 

  77. Saper CB, Loewy AD, Swanson LW, Cowan WM (1976) Direct hypothalamo-autonomic connections. Brain Res 117:305–312

    Article  PubMed  CAS  Google Scholar 

  78. Schwartz GJ, Salorio CF, Skoglund C, Moran TH (1999) Gut vagal afferent lesions increase meal size but do not block gastric preload-induced feeding suppression. Am J Physiol 276:R1623–R1629

    PubMed  CAS  Google Scholar 

  79. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671

    PubMed  CAS  Google Scholar 

  80. Sclafani A, Ackroff K, Schwartz GJ (2003) Selective effects of vagal deafferentation and celiac-superior mesenteric ganglionectomy on the reinforcing and satiating action of intestinal nutrients. Physiol Behav 78:285–294

    Article  PubMed  CAS  Google Scholar 

  81. Smith GP (1996) The direct and indirect controls of meal size. Neurosci Biobehav Rev 20:41–46

    Article  PubMed  CAS  Google Scholar 

  82. Snowdon CT (1970) Gastrointestinal sensory and motor control of food intake. J Comp Physiol Psychol 71:68–76

    Article  PubMed  CAS  Google Scholar 

  83. Snowdon CT, Epstein AN (1970) Oral and intragastric feeding in vagotomized rats. J Comp Physiol Psychol 71:59–67

    Article  PubMed  CAS  Google Scholar 

  84. Stearns AT, Balakrishnan A, Radmanesh A, Ashley SW, Rhoads DB, Tavakkolizadeh A (2012) Relative contributions of afferent vagal fibers to resistance to diet-induced obesity. Dig Dis Sci 57(5):1281–1290

    Article  PubMed  CAS  Google Scholar 

  85. Stearns AT, Balakrishnan A, Rounds J, Rhoads DB, Ashley SW, Tavakkolizadeh A (2008) Capsaicin-sensitive vagal afferents modulate posttranscriptional regulation of the rat Na+/glucose cotransporter SGLT1. Am J Physiol Gastrointest Liver Physiol 294:G1078–G1083

    Article  PubMed  CAS  Google Scholar 

  86. van de Wall EH, Pomp ER, Strubbe JH, Scheurink AJ, Koolhaas JM (2005) Deafferentation affects short-term but not long-term control of food intake. Physiol Behav 84:659–667

    Article  PubMed  Google Scholar 

  87. van der Kooy D, Koda LY, McGinty JF, Gerfen CR, Bloom FE (1984) The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224:1–24

    Article  PubMed  Google Scholar 

  88. Walls EK, Phillips RJ, Wang FB, Holst MC, Powley TL (1995) Suppression of meal size by intestinal nutrients is eliminated by celiac vagal deafferentation. Am J Physiol 269:R1410–R1419

    PubMed  CAS  Google Scholar 

  89. Walls EK, Wang FB, Holst MC, Phillips RJ, Voreis JS, Perkins AR, Pollard LE, Powley TL (1995) Selective vagal rhizotomies: a new dorsal surgical approach used for intestinal deafferentations. Am J Physiol 269:R1279–R1288

    PubMed  CAS  Google Scholar 

  90. Wang FB, Powley TL (2000) Topographic inventories of vagal afferents in gastrointestinal muscle. J Comp Neurol 421:302–324

    Article  PubMed  CAS  Google Scholar 

  91. Wei JY, Wang YH, Go VL, Tache Y (1997) Esophageal distension induced gastric relaxation is mediated in part by vagal peripheral reflex mechanism in rats. J Auton Nerv Syst 63:12–18

    Article  PubMed  CAS  Google Scholar 

  92. Zagorodnyuk VP, Chen BN, Brookes SJH (2001) Intraganglionic laminar endings are mechanotransduction sites of vagal tension receptors in the guinea-pig stomach. J Physiol 534(1):255–268

    Article  PubMed  CAS  Google Scholar 

  93. Zhuo H, Helke CJ (1996) Presence and localization of neurotrophin receptor tyrosine kinase (TrkA, TrkB, TrkC) mRNAs in visceral afferent neurons of the nodose and petrosal ganglia. Brain Res Mol Brain Res 38:63–70

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mary Ann Honors and Kim Kinzig for assistance with real-time PCR and use of their BioRad iCycler. Grant support, NS046716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward A. Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, E.A. Vagal afferent controls of feeding: a possible role for gastrointestinal BDNF. Clin Auton Res 23, 15–31 (2013). https://doi.org/10.1007/s10286-012-0170-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-012-0170-x

Keywords

Navigation