Skip to main content
Log in

3D Bicipital Groove Shape Analysis and Relationship to Tendopathy

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The bicipital groove of the proximal humerus is formed by the medial and lateral tuberosities and serves to retain the long biceps tendon in its proper place as the arm moves. Bicipital root and proximal tendon disorders are an important symptom generator in the shoulder. The accuracy of the diagnosis of many shoulder disorders visually without quantitative shape analysis is limited, motivating a clinical need for some ancillary method to assess the proximal biceps. In previous studies, measurements of bicipital groove shape were 2-dimensional (2D), taken from a single axial slice. Because of significant variations in groove shape from one axial slice to another in a single patient, such approaches risk overlooking shape features important to long biceps tendon pathology. In this paper, we present a study of the relationship between bicipital groove shape and long biceps tendon pathology using a novel 3-dimensional (3D) shape descriptor for the bicipital groove. In addition to providing quantitative measures of the shape of the groove and its relation to tendopathy, the new descriptor allows for intuitive, descriptive visualization of the shape of the groove.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8
Fig 9.
Fig 10
Fig 11
Fig 12
Fig 13
Fig 14
Fig 15
Fig 16

Similar content being viewed by others

References

  1. Bateman JE: The Shoulder and Neck. USA: W. B. Saunders Company, 1978

    Google Scholar 

  2. Meyer AW: Spontaneous dislocation and destruction of tendon of long head of biceps brachii. Fifty-nine instances. Arch Surg 17:493–506, 1928

    Google Scholar 

  3. Hitchcock HH, Bechtol CO: Painful shoulder. Observations on the role of the tendon of the biceps brachii in its causation. J Bone Jt Surg Am 30A:263–273, 1948

    CAS  Google Scholar 

  4. Ueberham K, Le Floch-Prigent P: Intertubercular sulcus of the humerus: biometry and morphology of 100 dry bones. Surg Radiol Anat 20(5):351–354, 1998

    Article  PubMed  CAS  Google Scholar 

  5. Pfahler M, Brenner S, Refior H: The role of the bicipital groove in tendopathy of the long biceps tendon. J Bone Jt Surg 8(5):419–424, 1999

    CAS  Google Scholar 

  6. Ahovuo J: Radiographic anatomy of the intertubercular groove of the humerus. Eur J Radiol 5(2):83–86, 1985

    PubMed  CAS  Google Scholar 

  7. Robertson DD, Yuan J, Bigliani LU, Flatow EL, Yamaguchi K: Three-dimensional analysis of the proximal part of the humerus: relevance to arthroplasty. J Bone Jt Surg Am 82-A(11):1594–1602, 2000

    CAS  Google Scholar 

  8. Itamura J, Dietrick T, Roidis N, Shean C, Chen F, Tibone J: Analysis of the bicipital groove as a landmark for humeral head replacement. J Bone Jt Surg 11(4):322–326, 2002

    Google Scholar 

  9. Blum H: A transformation for extracting new descriptors of shape. In: Whaten-Dunn W Ed. Models for the Perception of Speech and Visual Form. Cambridge, USA: MIT Press, 1967, pp 362–380

    Google Scholar 

  10. Pizer S, Fletcher PT, Joshi S, Thall A, Chen JZ, Fridman Y, Fritsch DS, Gash AG, Glotzer JM, Jiroutek MR, Lu C, Muller KE, Tractor G, Yushkevich P, Chaney EL: Deformable M-reps for 3D medical image segmentation. IJCV 55(2–3):85–106, 2003

    Article  Google Scholar 

  11. Heijden F, Duin RPW, Ridder D, Tax DMJ: Classification, Parameter Estimation and State Estimation: An Engineering Approach Using Matlab. USA: John Wiley and Sons, 2004

    Book  Google Scholar 

  12. van Leersum M, Schweitzer ME: Magnetic resonance imaging of the biceps complex. Magn Reson Imaging Clin N Am 1(1):77–86, 1993

    PubMed  Google Scholar 

  13. Cervilla V, Schweitzer ME, Ho C, Motta A, Kerr R, Resnick D: Medial dislocation of the biceps brachii tendon: appearance at MR imaging. Radiology 180(2):523–526, 1991

    PubMed  CAS  Google Scholar 

  14. Jain AK: Fundamentals of Digital Image Processing. USA: Prentice Hall, New Jersey, 1989

    Google Scholar 

  15. Duda RO, Hart PE: Use of the Hough transformation to detect lines and curves in pictures. Commun ACM 15:11–15, 1972

    Article  Google Scholar 

  16. Goodall C: Procrustes methods in the statistical analysis of shape. J R Stat Soc B 53(2):285–339, 1991

    Google Scholar 

  17. Jolliffe IT: Principal Components Analysis. New York, USA: Springer-Verlag, 1986

    Google Scholar 

  18. Sadjadi FA, Hall EL: Three-dimensional moment invariants. IEEE PAMI 2(2):127–136, 1980

    Google Scholar 

  19. Delft University of Technology: PRTools 4. http://www.prtools.org, 2005

  20. Fukunaga K: Introduction to Statistical Pattern Recognition, 2nd edition. Boston: Academic Press, 1990

    Google Scholar 

  21. The MathWorks, Inc.: Matlab 7.0.4.365 R14 SP2, 1984–2005

  22. Selveraj KG, Selvakuhmarb V, Indrasingh I, Chandib G: Handedness identification from intertubercular sulcus of the humerus by discriminant function analysis. Forensic Sci Int 98:101–108, 1998

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron D. Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, A.D., Hamarneh, G. & Schweitzer, M.E. 3D Bicipital Groove Shape Analysis and Relationship to Tendopathy. J Digit Imaging 21, 219–234 (2008). https://doi.org/10.1007/s10278-007-9027-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-007-9027-6

Key words

Navigation