Skip to main content
Log in

A novel constitutive model for passive right ventricular myocardium: evidence for myofiber–collagen fiber mechanical coupling

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The function of right ventricle (RV) is recognized to play a key role in the development of many cardiopulmonary disorders, such as pulmonary arterial hypertension (PAH). Given the strong link between tissue structure and mechanical behavior, there remains a need for a myocardial constitutive model that accurately accounts for right ventricular myocardium architecture. Moreover, most available myocardial constitutive models approach myocardium at the length scale of mean fiber orientation and do not explicitly account for different fibrous constituents and possible interactions among them. In the present work, we developed a fiber-level constitutive model for the passive mechanical behavior of the right ventricular free wall (RVFW). The model explicitly separates the mechanical contributions of myofiber and collagen fiber ensembles, and accounts for the mechanical interactions between them. To obtain model parameters for the healthy passive RVFW, the model was informed by transmural orientation distribution measurements of myo- and collagen fibers and was fit to the mechanical testing data, where both sets of data were obtained from recent experimental studies on non-contractile, but viable, murine RVFW specimens. Results supported the hypothesis that in the low-strain regime, the behavior of the RVFW is governed by myofiber response alone, which does not demonstrate any coupling between different myofiber ensembles. At higher strains, the collagen fibers and their interactions with myofibers begin to gradually contribute and dominate the behavior as recruitment proceeds. Due to the use of viable myocardial tissue, the contribution of myofibers was significant at all strains with the predicted tensile modulus of \(\sim \)32 kPa. This was in contrast to earlier reports (Horowitz et al. 1988) where the contribution of myofibers was found to be insignificant. Also, we found that the interaction between myo- and collagen fibers was greatest under equibiaxial strain, with its contribution to the total stress not exceeding 20 %. The present model can be applied to organ-level computational models of right ventricular dysfunction for efficient diagnosis and evaluation of pulmonary hypertension disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Beck JV, Arnold KJ (1977) Parameter estimation in engineering and science. James Beck

  • Bischoff JE (2006) Continuous versus discrete (invariant) representation of fibrous structures for modeling non-linear anisotropic soft tissue behavior. Int J Non-Linear Mech 41:167–179

    Article  Google Scholar 

  • Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF (2009) The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 135:794–804. doi:10.1378/chest.08-0492

    Article  Google Scholar 

  • Borg TK, Caulfield JB (1981) The collagen matrix of the heart. Fed Proc 40:2037–2041

    Google Scholar 

  • Borg TK, Johnson LD, Lill PH (1983) Specific attachment of collagen to cardiac myocytes: in vivo and in vitro. Dev Biol 97:417–423

    Article  Google Scholar 

  • Caulfield JB, Borg TK (1979) The collagen network of the heart. Lab Invest 40:364–372

    Google Scholar 

  • Champion HC, Michelakis ED, Hassoun PM (2009) Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation 120:992–1007. doi:10.1161/CIRCULATIONAHA.106.674028

    Article  Google Scholar 

  • Chatrchyan S et al (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B 716:30–61. doi:10.1016/j.physletb.2012.08.021

    Article  Google Scholar 

  • Costa KD, Holmes JW, MeCulloch AD (2001) Modelling cardiac mechanical properties in three dimensions. Philos Trans R Soc Lond 359:1233–1250

    Article  MATH  Google Scholar 

  • Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR (2006) Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27:3631–3638

    Google Scholar 

  • Dokos S, Smaill BH, Young AA, LeGrice IJ (2002) Shear properties of passive ventricular myocardium. Am J Physiol Heart Circ Physiol 283:H2650–2659

    Article  Google Scholar 

  • Fan R, Sacks MS (2014) Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J Biomech 47:2043–2054

    Article  Google Scholar 

  • Fata B, Zhang W, Amini R, Sacks M (2014) Insights into regional adaptations in the growing pulmonary artery using a meso-scale structural model: effects of ascending aorta impingement. J Biomech Eng. doi:10.1115/1.4026457

  • Forfia PR et al (2006) Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med 174:1034–1041. doi:10.1164/rccm.200604-547OC

    Article  Google Scholar 

  • Forfia PR et al (2008) Hyponatremia predicts right heart failure and poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 177:1364–1369. doi:10.1164/rccm.200712-1876OC

    Article  Google Scholar 

  • Fox CC, Hutchins GM (1972) The architecture of the human ventricular myocardium. Hopkins Med J 130:289–299

    Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35. doi:10.1098/rsif.2005.0073

    Article  Google Scholar 

  • Hasenkam JM, Nygaard H, Paulsen PK, Kim WY, Hansen OK (1994) What force can the myocardium generate on a prosthetic mitral valve ring? An animal experimental study. J Heart Valve Dis 3:324–329

    Google Scholar 

  • Hemnes AR, Champion HC (2008) Right heart function and haemodynamics in pulmonary hypertension. Int J Clin Pract 62:11–19. doi:10.1111/j.1742-1241.2008.01812.x

    Article  Google Scholar 

  • Hill MR, Simon MA, Valdez-Jasso D, Zhang W, Champion HC, Sacks MS (2014) Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Ann Biomed Eng 42:2451–2465. doi:10.1007/s10439-014-1096-3

    Article  Google Scholar 

  • Holzapfel GA, Gasser TC (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Ogden RW (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans R Soc Lond A Math Phys Eng Sci 367:3445–3475. doi:10.1098/rsta.2009.0091

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Sommer G, Auer M, Regitnig P, Ogden RW (2007) Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann Biomed Eng 35:530–545. doi:10.1007/s10439-006-9252-z

    Article  Google Scholar 

  • Horowitz A, Lanir Y, Yin FC, Perl M, Sheinman I, Strumpf RK (1988) Structural three-dimensional constitutive law for the passive myocardium. J Biomech Eng 110:200–207

    Article  Google Scholar 

  • Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New York

    Book  Google Scholar 

  • Humphrey JD, Yin FC (1987) On constitutive relations and finite deformations of passive cardiac tissue: I. A pseudostrain-energy function. J Biomech Eng 109:298–304

    Article  Google Scholar 

  • Itskov M, Ehret AE, Mavrilas D (2006) A polyconvex anisotropic strain-energy function for soft collagenous tissues. Biomech Model Mechanobiol 5:17–26. doi:10.1007/s10237-005-0006-x

    Article  Google Scholar 

  • Kassab GS, Sacks MS (2016) Structure-based mechanics of tissues and organs. Springer, Boston

    Book  Google Scholar 

  • Kenedi RM, Gibson T, Daly CH (eds) (1965) Biomechanics and related bio-engineering topics. Bioengineering studies of human skin. Pergamon Press, Oxford

    Google Scholar 

  • Kodama M, Takimoto Y (2000) Influence of 5-hydroxytryptamine and the effect of a new serotonin receptor antagonist (sarpogrelate) on detrusor smooth muscle of streptozotocin-induced diabetes mellitus in the rat. Int J Urol 7:231–235

    Article  Google Scholar 

  • Lanir Y (1979) A structural theory for the homogeneous biaxial stress–strain relationships in flat collageneous tissues. J Biomech 12:423–436

    Article  Google Scholar 

  • Lanir Y (1983a) Constitutive equations for fibrous connective tissues. J Biomech 16:1–12

    Article  Google Scholar 

  • Lanir Y (1983b) Constitutive equations for the lung tissue. J Biomech Eng 105:374–380

    Article  Google Scholar 

  • Lanir Y (1994) Plausibility of structural constitutive-equations for isotropic soft-tissues in finite static deformations. J Appl Mech-T ASME 61:695–702

    Article  MATH  Google Scholar 

  • Lee C-H, Zhang W, Liao J, Carruthers Christopher A, Sacks Jacob I, Sacks Michael S (2015) On the presence of affine fibril and fiber kinematics in the mitral valve anterior leaflet. Biophys J 108:2074–2087. doi:10.1016/j.bpj.2015.03.019

    Article  Google Scholar 

  • Macchiarelli G, Ohtani O, Nottola SA, Stallone T, Camboni A, Prado IM, Motta PM (2002) A micro-anatomical model of the distribution of myocardial endomysial collagen. Histol Histopathol 17:699–706

    Google Scholar 

  • Millington P, Gibson T, Evans J, Barbenel J (1971) Structural and mechanical aspects of connective tissue. Adv Biomed Eng 1:189–248

    Article  Google Scholar 

  • Ogden R (2003) Nonlinear elasticity, anisotropy, material stability, and residual stresses in soft tissue. In: Ogden R (ed) Biomechanics of soft tissue in cardiovascular system. Springer, New York

    Google Scholar 

  • Pope AJ, Sands GB, Smaill BH, LeGrice IJ (2008) Three-dimensional transmural organization of perimysial collagen in the heart. Am J Physiol Heart Circ Physiol 295:H1243–H1252

  • Sacks MS (2003) Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J Biomech Eng 125:280–287

    Article  Google Scholar 

  • Sacks MS, Chuong CJ (1992) Biaxial mechanical properties of passive right ventricular free wall myocardium. J Biomech Eng 115:202–205

    Article  Google Scholar 

  • Sacks MS, Chuong CJ (1993) A constitutive relation for passive right-ventricular free wall myocardium. J Biomech 26:1341–1345

    Article  Google Scholar 

  • Sacks MS, Zhang W, Wognum S (2016) A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues. Interface Focus 6:20150090. doi:10.1098/rsfs.2015.0090

    Article  Google Scholar 

  • Schmid H, Nash MP, Young AA, Hunter PJ (2006) Myocardial material parameter estimation—a comparative study for simple shear. J Biomech Eng 128:742–750. doi:10.1115/1.2244576

    Article  Google Scholar 

  • Schmid H, Wang YK, Ashton J, Ehret AE, Krittian SB, Nash MP, Hunter PJ (2009) Myocardial material parameter estimation: a comparison of invariant based orthotropic constitutive equations. Comput Methods Biomech Biomed Eng 12:283–295. doi:10.1080/10255840802459420

    Article  Google Scholar 

  • Simon MA (2010) Right ventricular adaptation to pressure overload. Curr Opin Crit Care 16:237–243. doi:10.1097/MCC.0b013e3283382e58

    Article  Google Scholar 

  • Spencer AJM (1984) Continuum theory of the mechanics of fibre-reinforced composites, vol 282. Springer, New York

    Book  MATH  Google Scholar 

  • Stone AC, Klinger JR (2008) The right ventricle in pulmonary hypertension. In: Pulmonary hypertension. Humana Press, pp 93–125

  • Streeter DD (1979) Gross morphology and fiber geometery of the heart. In: Berne RM, Sperelakis N, Geigert SR (eds) Handbook of physiology. Williams and Wilkins, Baltimore, pp 61–112

    Google Scholar 

  • Streeter DD Jr, Spotnitz HM, Patel DP, Ross J Jr, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circul Res 24:339–347

    Article  Google Scholar 

  • Valdez-Jasso D, Simon MA, Champion HC, Sacks MS (2012) A murine experimental model for the mechanical behaviour of viable right-ventricular myocardium. J Physiol 590:4571–4584. doi:10.1113/jphysiol.2012.233015

    Article  Google Scholar 

  • Vigano A, Donaldson N, Higginson IJ, Bruera E, Mahmud S, Suarez-Almazor M (2004) Quality of life and survival prediction in terminal cancer patients: a multicenter study. Cancer 101:1090–1098. doi:10.1002/cncr.20472

    Article  Google Scholar 

  • Voelkel NF, Natarajan R, Drake JI, Bogaard HJ (2011) Right ventricle in pulmonary hypertension. Compr Physiol 1:525–540. doi:10.1002/cphy.c090008

    Google Scholar 

  • Yin FC, Strumpf RK, Chew PH, Zeger SL (1987) Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J Biomech 20:577–589

    Article  Google Scholar 

  • Zhang W, Ayoub S, Liao J, Sacks MS (2015) A meso-scale layer-specific structural constitutive model of the mitral heart valve leaflets. Acta Biomater. doi:10.1016/j.actbio.2015.12.001

  • Zhang W, Ayoub S, Liao J, Sacks MS (2016) A meso-scale layer-specific structural constitutive model of the mitral heart valve leaflets. Acta Biomater 32:238–255. doi:10.1016/j.actbio.2015.12.001

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. National Institutes of Health grants 1F32 HL132543 to R.A. and 1F32 HL117535 to M.R.H., the American Heart Association grant 10BGIA3790022 to M.A.S., and The Pittsburgh Foundation M2010-0052 to M.A.S. and M.S.S. We also would like to thank Dr. Joao S. Soares for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks.

Appendices

Appendix 1

In this appendix, we discuss the local convexity of the energy function \(\Psi (\mathbf{C})\) with respect to the right Cauchy–Green tensor \(\mathbf{C}\). Recalling from relation (6) that the ground matrix term \(\Psi ^{{g}}\) is neo-Hookean and convex in \(\mathbf{C}\), it suffices to only assess the convexity of the anisotropic part of the energy, given by

$$\begin{aligned} \Psi ^{\mathrm{Aniso}}(\mathbf{C})={\phi }^{{m}} \Psi ^{{m}}(\mathbf{C})+{\phi }^{{c}}\left[ { \Psi ^{{c}}(\mathbf{C})+\Psi ^{{m}-{c}}(\mathbf{C})} \right] . \end{aligned}$$
(33)

By definition, the local convexity of \(\Psi ^{\mathrm{Aniso}}(\mathbf{C})\) requires that the fourth-order tensor \(\mathbf{L}= \partial ^{2} \Psi ^{\mathrm{Aniso}}(\mathbf{C})/\partial \mathbf{C}\partial \mathbf{C}\) be positive semi-definite, i.e.,

$$\begin{aligned} \mathbf{A}\cdot \mathbf{L} \mathbf{A}\ge 0, \end{aligned}$$
(34)

for all second order tensors \(\mathbf{A}\). We note that, although the tensor \(\mathbf{C}\) is subjected to the incompressibility constraint \(\hbox {det}(\mathbf{C})=1\), we investigate the convexity of \(\Psi (\mathbf{C})\) in 2D matrix \(\mathbf{C}\) with three independent components in the plane containing the unit vectors \({\mathbf{n}}^{{m}}\) and \({\mathbf{n}}^{{c}}\).

Substituting the energy expressions in relations (11) and (12) into (33), it follows that

$$\begin{aligned}&\Psi ^{\mathrm{Aniso}}(\mathbf{C})\nonumber \\&\quad =\frac{1}{{H}} \int \limits _0^{{H}} {\left[ {{\phi }^{{m}}\int \limits _{-\pi /2}^{\pi /2} {\Gamma ^{{m}}\left( {\theta ^{{m}},{z}} \right) \Psi _{\mathrm{ens}}^{{m}} \left( {{{I}}^{{m}}} \right) \hbox {d}\theta ^{{m}} {\hbox {d}z}} } \right. }\nonumber \\&\qquad +\,{\phi }^{{c}} \int \limits _{-\pi /2}^{\pi /2} {\Gamma ^{{c}}\left( {\theta ^{{c}},{z}} \right) \Psi _{\mathrm{ens}}^{{c}} \left( {{{I}}^{{c}}} \right) \hbox {d}\theta ^{{c}} {\hbox {d}z}}\nonumber \\&\qquad +\,{\phi }^{{c}}\int \limits _{-\pi /2}^{\pi /2} \int \limits _{-\pi /2}^{\pi /2} \Gamma ^{{m}}\left( {\theta ^{{m}},{z}} \right) \Gamma ^{{c}}\left( {\theta ^{{c}},{z}} \right) \nonumber \\&\qquad \times \,\Psi _{\mathrm{ens}}^{{m}-{c}}\left. \left( {{{I}}^{{m}},{{I}}^{{c}}} \right) \hbox {d}\theta ^{{c}} \hbox {d}\theta ^{{m}} \right] {\hbox {d}z}, \end{aligned}$$
(35)

in which use has been made of \(\theta _0^{{c}} =\pi /2\). Recalling that the distribution functions \(\Gamma ^{{m}}\) and \(\Gamma ^{{c}}\) satisfy the condition (5), it is easy to see that the convexity of the above expression in \(\mathbf{C}\) is equivalent to the convexity of the function

$$\begin{aligned}&\Psi ^{{*}}\left( {{{I}}^{{m}},{{I}}^{{c}};{{R}}^{{m}},{{R}}^{{c}}} \right) \nonumber \\&\quad ={\phi }^{{m}}\int \limits _{-\pi /2}^{\pi /2} {{{R}}^{{m}}\left( {\theta ^{{m}}} \right) \Psi _{\mathrm{ens}}^{{m}} \left( {{{I}}^{{m}}} \right) \hbox {d}\theta ^{{m}}}\nonumber \\&\qquad +\,{\phi }^{{c}}\int \limits _{-\pi /2}^{\pi /2} {{{R}}^{{c}}\left( {\theta ^{{c}}} \right) \Psi _{\mathrm{ens}}^{{c}} \left( {{{I}}^{{c}}} \right) \hbox {d}\theta ^{{c}}}+{\phi }^{{c}}\int \limits _{-\pi /2}^{\pi /2} \nonumber \\&\qquad \times \,{\int \limits _{-\pi /2}^{\pi /2} {{{R}}^{{m}}\left( {\theta ^{{m}}} \right) {{R}}^{{c}}\left( {\theta ^{{c}}} \right) \Psi _{\mathrm{ens}}^{{m}-{c}} \left( {{{I}}^{{m}},{{I}}^{{c}}} \right) \hbox {d}\theta ^{{c}} \hbox {d}\theta ^{{m}}}},\nonumber \\ \end{aligned}$$
(36)

where \({{R}}^{{m}}\) and \({{R}}^{{c}}\) are two distribution functions satisfying the condition (5). Making use of this condition, the above energy function can be rewritten as

$$\begin{aligned}&\Psi ^{{*}}\left( {{{I}}^{{m}},{{I}}^{{c}};{{R}}^{{m}},{{R}}^{{c}}} \right) \nonumber \\&\quad =\int \limits _{-\pi /2}^{\pi /2} {\int \limits _{-\pi /2}^{\pi /2} {{{R}}^{{m}}\left( {\theta ^{{m}}} \right) {{R}}^{{c}}\left( {\theta ^{{c}}} \right) \Psi _{\mathrm{ens}}^{*} \left( {{{I}}^{{m}},{{I}}^{{c}}} \right) \hbox {d}\theta ^{{m}} \hbox {d}\theta ^{{c}}} },\nonumber \\ \end{aligned}$$
(37)

with

$$\begin{aligned} \Psi _{\mathrm{ens}}^{*} ({{I}}^{{m}},{{I}}^{{c}})= & {} {\phi }^{{m}} \Psi _{\mathrm{ens}}^{{m}} ({{I}}^{{m}})+{\phi }^{{c}}[\Psi _{\mathrm{ens}}^{{c}} ({{I}}^{{c}})\nonumber \\&+\,\Psi _{\mathrm{ens}}^{{m}-{c}} ({{I}}^{{m}},{{I}}^{{c}})]. \end{aligned}$$
(38)

Therefore, it follows that the convexity of the function \(\Psi _{\mathrm{ens}}^{*} \left( {{{I}}^{{m}},{{I}}^{{c}}} \right) \) in \(\mathbf{C}\) implies the convexity of \(\Psi ^{\mathrm{Aniso}}(\mathbf{C})\). In other words, \(\Psi ^{\mathrm{Aniso}}(\mathbf{C})\) is convex if the tensor \({\mathbf{L}}^{{*}}= \partial ^{2} \Psi _{\mathrm{ens}}^{*} \left( {{{I}}^{{m}},{{I}}^{{c}}} \right) /\partial \mathbf{C}\partial \mathbf{C}\) is positive semi-definite. The tensor \({\mathbf{L}}^{{*}}\) is obtained as

$$\begin{aligned}&{\mathbf{L}}^{{*}}=\left( {\Psi _{\mathrm{ens}}^{*} } \right) _{,{{I}}^{{m}} {{I}}^{{m}}}{\mathbf{n}}^{{m}}\otimes {\mathbf{n}}^{{m}}\otimes {\mathbf{n}}^{{m}}\otimes {\mathbf{n}}^{{m}}\nonumber \\&\qquad +\,\left( {\Psi _{\mathrm{ens}}^{*}} \right) _{,{{I}}^{{c}} {{I}}^{{c}}} {\mathbf{n}}^{{c}}\otimes {\mathbf{n}}^{{c}}\otimes {\mathbf{n}}^{{c}}\otimes {\mathbf{n}}^{{c}} +\left( {\Psi _{\mathrm{ens}}^{*} } \right) _{,{{I}}^{{m}} {{I}}^{{c}}}\nonumber \\&\qquad ({\mathbf{n}}^{{m}}\otimes {\mathbf{n}}^{{m}}\otimes {\mathbf{n}}^{{c}}\otimes {\mathbf{n}}^{{c}}+{\mathbf{n}}^{{c}}\otimes {\mathbf{n}}^{{c}}\otimes {\mathbf{n}}^{{m}}\otimes {\mathbf{n}}^{{m}}), \end{aligned}$$
(39)

in which subscript commas followed by an index denote derivatives with respect to the corresponding variables. Making use of the above expression, the condition (34) can be written as

$$\begin{aligned} {{a}}_1^2 \left( {\Psi _{\mathrm{ens}}^{*}}\right) _{,{{I}}^{{m}} {{I}}^{{m}}} +{{a}}_{2}^{2} \left( {\Psi _{\mathrm{ens}}^{*}} \right) _{,{{I}}^{{c}} {{I}}^{{c}}}+2 {{a}}_1 {{a}}_2 \left( {\Psi _{\mathrm{ens}}^{*}} \right) _{,{{I}}^{{m}} {{I}}^{{c}}} \ge 0,\nonumber \\ \end{aligned}$$
(40)

where \({{a}}_1 ={\mathbf{n}}^{{m}}\cdot \mathbf{A}{\mathbf{n}}^{{m}}\) and \({{a}}_2 ={\mathbf{n}}^{{c}}\cdot \mathbf{A}{\mathbf{n}}^{{c}}\). The above condition can be further recast into

$$\begin{aligned} \left( {{\begin{array}{l} {{{a}}_1} \\ {{{a}}_2} \\ \end{array} }} \right) \cdot \left( {{\begin{array}{ll} {\left( {\Psi _{\mathrm{ens}}^{*}} \right) _{,{{I}}^{{m}} {{I}}^{{m}}}}&{} {\left( {\Psi _{\mathrm{ens}}^{*}} \right) _{,{{I}}^{{m}} {{I}}^{{c}}}} \\ {\left( {\Psi _{\mathrm{ens}}^{*}} \right) _{,{{I}}^{{m}} {{I}}^{{c}}}}&{} {\left( {\Psi _{\mathrm{ens}}^{*}} \right) _{,{{I}}^{{c}} {{I}}^{{c}}}}\\ \end{array} }} \right) \left( {{\begin{array}{l} {{{a}}_1} \\ {{{a}}_2} \\ \end{array} }} \right) \ge 0, \end{aligned}$$
(41)

which is always satisfied for arbitrary real values of \({{a}}_1\) and \({{a}}_2\) if \(\Psi _{\mathrm{ens}}^{*} \left( {{{I}}^{{m}},{{I}}^{{c}}} \right) \) is locally convex in \({{I}}^{{m}}\) and \({{I}}^{{c}}\) jointly. Two conditions to guarantee the convexity of \(\Psi _{\mathrm{ens}}^{*} \left( {{{I}}^{{m}},{{I}}^{{c}}} \right) \) are

$$\begin{aligned}&\left( {\Psi _{\mathrm{ens}}^{*} } \right) _{,{{I}}^{{m}} {{I}}^{{m}}} \ge 0,\quad \left( {\Psi _{\mathrm{ens}}^{*} } \right) _{,{{I}}^{{m}} {{I}}^{{m}}}\left( {\Psi _{\mathrm{ens}}^{*}} \right) _{,{{I}}^{{c}} {{I}}^{{c}}}\nonumber \\&\quad -\left[ {\left( {\Psi _{\mathrm{ens}}^{*} } \right) _{,{{I}}^{{m}} {{I}}^{{c}}}} \right] ^{2}\ge 0. \end{aligned}$$
(42)

It is further simple to show that \(\left( {\Psi _{\mathrm{ens}}^{*} } \right) _{,{{I}}^{{m}} {{I}}^{{m}}}\) is positive for the ensemble energy functions proposed in this work for all deformation (under the aforementioned conditions of positive material parameters). The remaining condition (42)\(_{2}\) will be satisfied if

$$\begin{aligned}&\left\{ \frac{{\phi }^{{m}} {{k}}_1^{{m}} }{2 {{I}}^{{m}}}\exp \left[ {{{k}}_2^{{m}} \left( {\sqrt{{{I}}^{{m}}}-1} \right) ^{2}} \right] \right. \nonumber \\&\quad \times \, \left[ {2 {{k}}_2^{{m}} (\sqrt{{{I}}^{{m}}}-1)^{2}+1/\sqrt{{{I}}^{{m}}}} \right] \nonumber \\&\quad \left. +\,{\phi }^{{c}} {{k}}_1^{{mc}} {{k}}_2^{{mc}} \int \limits _{\lambda _{{lb}} }^{\lambda _{{ub}} } {D(\lambda _{{s}} )\psi \hbox {d}\lambda _{{s}} } \right\} \nonumber \\&\quad \times \, {\phi }^{{c}}\left\{ \frac{{k}^{{c}}}{2 {{I}}^{{c}}\sqrt{{{I}}^{{c}}}}\int \limits _{\lambda _{{lb}} }^{\lambda _{{ub}} } \frac{D(\lambda _{{s}} )}{\lambda _{{s}} } \hbox {d}\lambda _{{s}} \right. \nonumber \\&\left. \quad +\,{{k}}_1^{{mc}} {{k}}_2^{{mc}} \int \limits _{\lambda _{{lb}} }^{\lambda _{{ub}} } {\frac{D(\lambda _{{s}} )}{\lambda _{{s}}^4 } \exp \left[ {{{k}}_2^{{mc}} \left( {{\tilde{I}}-2} \right) } \right] \hbox {d}\lambda _{{s}} } \right\} \nonumber \\&\quad -\,\left\{ {\phi }^{{c}} {{k}}_1^{{mc}} {{k}}_2^{{mc}} \int \limits _{\lambda _{{lb}} }^{\lambda _{{ub}} } \frac{D(\lambda _{{s}} )}{\lambda _{{s}}^2 } \left\{ {\exp \left[ {{{k}}_2^{{mc}} ({\tilde{I}}-2)} \right] }\right. \right. \nonumber \\&\quad \left. \left. -\,\exp \left[ {{{k}}_2^{{mc}} ({{I}}^{{m}}-1)} \right] \right\} \hbox {d}\lambda _{{s}} \right\} ^{2}\ge 0, \end{aligned}$$
(43)

where the function \(\psi \left( {{{I}}^{{m}},{{I}}^{{c}}} \right) \) is given in (22).

Appendix 2

Here, we express the energy term \(\Psi ^{{m}-{m}} \) used to detect possible interactions between myofiber ensembles in the low-strain regime (where \(\Psi ^{{c}} \) and \(\Psi ^{{m}-{c}} \) do not contribute) as follows

$$\begin{aligned}&\Psi ^{{m}-{m}}\nonumber \\&\quad =\frac{1}{{H}} \frac{{{k}}_1^{{m}-{m}} }{2 {{k}}_2^{{m}-{m}} } \int \limits _0^{{H}} \left\{ \int \limits _{-\pi /2}^{\pi /2} \int \limits _{-\pi /2}^{-\pi /2} \Gamma ^{{m}}\left( {\theta ^{{m}},Z} \right) \Gamma ^{{m}}\left( {\theta ^{{m}*},Z} \right) \right. \nonumber \\&\qquad \times \, \left\{ {\exp \left[ {{{k}}_2^{{m}-{m}} \left( {\sqrt{{{I}}^{{m}}+{{I}}^{{m}*}}-\sqrt{2}} \right) ^{2}} \right] -1} \right\} \hbox {d}\theta ^{{m}} \hbox {d}\theta ^{{m}*} \nonumber \\&\qquad -\, \int \limits _{-\pi /2}^{\pi /2} \left[ {\Gamma ^{{m}}\left( {\theta ^{{m}},{z}} \right) } \right] ^{2}\nonumber \\&\qquad \times \,\left. \left\{ {\exp \left[ {2 {{k}}_2^{{m}-{m}} \left( {\sqrt{{{I}}^{{m}}}-1} \right) ^{2}} \right] -1} \right\} \hbox {d}\theta ^{{m}} \right\} {\hbox {d}z}. \end{aligned}$$
(44)

In the above expression, \({{k}}_1^{{m}-{m}} \) and \({{k}}_2^{{m}-{m}} \) are unknown parameters, and the angular variables \(\theta ^{{m}}\) and \(\theta ^{{m}*}\) (associated with invariants \({{I}}^{{m}}\) and \({{I}}^{{m}*}\)) have been used to differentiate two myofiber ensembles with different orientations. The second term in the above expression subtracts the energy for the case of \(\theta ^{{m}}=\theta ^{{m}*}\) accounted for in the first term (enforcing that each myofiber ensemble does not interact with itself).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avazmohammadi, R., Hill, M.R., Simon, M.A. et al. A novel constitutive model for passive right ventricular myocardium: evidence for myofiber–collagen fiber mechanical coupling. Biomech Model Mechanobiol 16, 561–581 (2017). https://doi.org/10.1007/s10237-016-0837-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-016-0837-7

Keywords

Navigation