Skip to main content
Log in

Considerations on Joint and Articular Cartilage Mechanics

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

When studying joint degeneration leading to osteoarthritis (OA), it seems imperative that local joint tissue loading is known during normal everyday movement and that the adaptive/degenerative effects of this loading are quantified systematically. Philosophically, we believe the best way to approach this problem is by studying joint degeneration and osteoarthritis in long-term experimental models and by representing diarthrodial joints and the associated tissues with accurate, geometric and structural, theoretical models. Here, we present selected examples of our work representing this approach. Experimentally, we demonstrate that the local loading of joints changes continuously in experimental models of OA, not only because of the changing external and internal loading, but also because of the continuous alterations in joint contact geometry and tissue mechanical properties. Furthermore, we show that single bouts of joint loading affect gene expression, and that gene expression, as well as subsequent joint degeneration is site-specific. In fact, opposing articular surfaces that are exposed to the same loading may degenerate at completely different rates. Finally, we propose a series of theoretical models of articular cartilage and contact mechanics, demonstrating that many of the anisotropic and inhomogeneous properties can be explained by structural elements and their orientation and volumetric concentration across the tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham LD, Loeb GE (1985) The distal hindlimb musculature of the cat. Exp Brain Res 58:580–593

    Article  Google Scholar 

  • Adams ME (1989) Cartilage hypertrophy following canine anterior cruciate ligament transection differs among different areas of the joint. J Rheumatol 16:818–824

    PubMed  Google Scholar 

  • Andrews JG (1974) Biomechanical analysis of human motion. Kinesiology 4:32–42

    Google Scholar 

  • Armstrong CG (1986) An analysis of the stresses in a thin layer of articular cartilage in a synovial joint. Engn Med 15:55–61

    Article  Google Scholar 

  • Ateshian, GA, Lai WM, Zhu WB, Mow VC (1994) An asymptotic solution for the contact of two biphasic cartilage layers. J Biomech 27:1347–1360

    Article  PubMed  Google Scholar 

  • Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC (1991) Interspecies comparisons in in situ intrinsic mechanical properties of distal cartilage. J Orthop Res 9:330–340

    Article  PubMed  Google Scholar 

  • Boyd SK, Müller R, Zernicke RF (2002) Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J Bone Miner Res 17:687–694

    Article  PubMed  Google Scholar 

  • Boyd SK, Muller R, Leonard T, Herzog W (2005). Long-term periarticular bone adaptation in a feline knee injury model for post-traumatic experimental osteoarthritis. Osteoarthr Cartil 13:235–242

    Article  PubMed  Google Scholar 

  • Brandt KD, Myers SL, Burr D, Albrecht M (1991) Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament. Arthritis Rheum 34:1560–1570

    PubMed  Google Scholar 

  • Bursać PM, Obitz TW, Eisenberg SR, Stamenović D (1999) Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis. J Biomech 32:1125–1130

    Article  PubMed  Google Scholar 

  • Buschmann MD, Hunziker EB, Kim YJ, Grodzinsky AJ (1996) Altered aggrecan synthesis correlates with cell and nucleus structure in statically compressed cartilage. J Cell Sci 109(Pt 2):499–508

    PubMed  Google Scholar 

  • Christensen RM (1991) Mechanics of composite materials. Krieger, Malabar, FL, USA

    Google Scholar 

  • Clark AL, Herzog W, Leonard TR (2002) Contact area and pressure distribution in the feline patellofemoral joint under physiologically meaningful loading conditions. J Biomech 35(1):53–60

    Article  PubMed  Google Scholar 

  • Clark AL, Barclay LD, Matyas JR, Herzog W (2003) In situ chondrocyte deformation with physiological compression of the feline patellofemoral joint. J Biomech 36:553–568

    Article  PubMed  Google Scholar 

  • Clark AL, Mills L, Hart DA, Herzog W (2004) Muscle-induced patellofemoral joint loading rapidly affects cartilage mRNA levels in a site specific manner. J Musculoskelet Res 8(1):1–12

    Article  Google Scholar 

  • Clark AL, Leonard TR, Barclay L, Matyas JR, Herzog W (2005) Heterogeneity in patellofemoral cartilage adaptation to anterior cruciate ligament transection: chondrocyte shape and deformation with compression. Osteoarthritis and Cartilage, accepted 5th of July 2005

  • Cohen B, Lai WM, Mow VC (1998) A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng 120:491–496

    Article  PubMed  Google Scholar 

  • Couillard S (2002) Cartilage deformation from laser scanning. MSc Thesis, University of Calgary

  • Dedrick DK, Goulet RW, Huston L, Goldstein SA, Bole GG (1991) Early bone changes in experimental osteoarthritis using microscopic computed tomography. J Rheumatol 27:44–45

    Google Scholar 

  • Dedrick DK, Goldstein SA, Brandt KD, O’Connor BL, Goulet RW, Albrecht M (1993) A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthritis Rheum 36:1460–1467

    Article  PubMed  Google Scholar 

  • Eshelby JD (1956). The continuum theory of lattice defects. In: Seitz F, Turnbull D (eds). Progress in solid state physics, vol. 3, Academic, New York, p. 79

    Google Scholar 

  • Farquhar T, Dawson PR, Torzilli PA (1990) A microstructural model for the anisotropic drained stiffness of articular cartilage. J Biomech Eng 112:414–425

    Article  PubMed  Google Scholar 

  • Federico S, Herzog W, Wu JZ, La Rosa G (2004a) Effect of fluid boundary conditions on joint contact mechanics and applications to the modelling of osteoarthritic joints. J Biomech Eng 126(2):220–225

    Article  Google Scholar 

  • Federico S, Herzog W, Wu JZ, La Rosa G (2004b) A method to estimate the elastic properties of the extracellular matrix of articular cartilage. J Biomech 37 (3):401–404

    Article  Google Scholar 

  • Federico S, Grillo A, Herzog W (2004c) A transversely isotropic composite with a statistical distribution of spheroidal inclusions: a geometrical approach to overall properties. J Mech Phys Solids 52(10):2309–2327

    Article  MATH  MathSciNet  Google Scholar 

  • Federico S, Grillo A, La Rosa G, Giaquinta G, Herzog W (2005) A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage. J Biomech (in press)

  • Grodzinsky AJ, Levenston ME, Jin M, Frank EH (2000) Cartilage tissue remodeling in response to mechanical forces. Annu Rev Biomed Eng 2:691–713

    Article  PubMed  Google Scholar 

  • Guilak F (1995) Compression-induced changes in the shape and volume of the chondrocyte nucleus. J Biomech 28:1529–1541

    Article  PubMed  Google Scholar 

  • Guilak F, Mow VC (2000) The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J Biomech 33:1663–1673

    Article  PubMed  Google Scholar 

  • Guilak F, Ratcliffe A, Mow VC (1995) Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J Orthop Res 13:410–421

    Article  PubMed  Google Scholar 

  • Han S-K, Federico S, Epstein M, Herzog W (2005) An articular cartilage contact model based on real surface geometry. J Biomech 38(1):179–184

    PubMed  Google Scholar 

  • Hasler EM, Herzog W (1998) Quantification of in vivo patellofemoral contact forces before and after ACL transection. J Biomech 31:37–44

    Article  PubMed  Google Scholar 

  • Hasler EM, Herzog W, Ronsky J (1996) Experimental evaluation of theoretical contact forces in the cat patellofemoral joint. J Biomech 29:1201–1205

    Article  PubMed  Google Scholar 

  • Hedlund H, Mengarelli-Widholm S, Reinholt F, Svensson O (1993) Stereological studies on collagen in bovine articular cartilage. Acta Pathologica, Microbiologica, et Immunologica Scandinavica (APMIS) 101:133–140

    Google Scholar 

  • Herzog W, Leonard TR (1991) Validation of optimization models that estimate the forces exerted by synergistic muscles. J Biomech 24S:31–39

    Article  Google Scholar 

  • Herzog W, Adams ME, Matyas JR, Brooks JG (1993). A preliminary study of hindlimb loading, morphology and biochemistry of articular cartilage in the ACL-deficient cat knee. Osteoarthr Cartil 1:243–251

    Article  PubMed  Google Scholar 

  • Herzog W, Diet S, Suter E, Mayzus P, Leonard TR, Müller C, Wu JZ, Epstein M (1998) Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis. J Biomech 31:1137–1145

    Article  PubMed  Google Scholar 

  • Herzog W, Longino D, Clark AL (2003) The role of muscles in joint adaptation and degeneration. Langenbecks Arch Surg 388:305–315

    Article  PubMed  Google Scholar 

  • Hodgson JA (1983) The relationship between soleus and gastrocnemius muscle activity in conscious cats—a model for motor unit recruitment? J Physiol 337:553–562

    PubMed  Google Scholar 

  • Holmes MH, Mow VC (1990) The non-linear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J Biomech 23:1145–1156

    Article  PubMed  Google Scholar 

  • Li LP, Buschmann MD, Shirazi-Adl A (2000) A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J Biomech 33:1533–1541

    Article  PubMed  Google Scholar 

  • Longino D, Butterfield T, Herzog W (2005) Frequency and length dependent effects of botulinum toxin-induced muscle weakness. J Biomech 38(3):609–613

    Article  PubMed  Google Scholar 

  • McLaughlin R (1977) A Study of the differential scheme for composite materials. Int J Eng Sci 15:237–244

    Article  MATH  Google Scholar 

  • Meachim G, Bentley G (1978) Horizontal splitting in patellar articular cartilage. Arth Rheum 21:669–674

    Article  Google Scholar 

  • Norris AN (1985) A differential scheme for the effective moduli of composites. Mech Mater 4:1–16

    Article  Google Scholar 

  • Qiu YP, Weng GJ (1990) On the application of the Mori-Tanaka theory involving transversely isotropic spheroidal inclusions. Int J Engng Sci 28:1121–1137

    Article  MATH  MathSciNet  Google Scholar 

  • Quinn TM, Grodzinsky AJ, Hunziker EG, Sandy, JD (1998) Effects of injurious compression on matrix turnover around individual cells in calf articular cartilage explants. J Orthop Res 16:490–499

    Article  PubMed  Google Scholar 

  • Radin EL, Martin RB, Burr DB, Caterson B, Boyd RD, Goodwin C (1984) Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res 2:221–234

    Article  PubMed  Google Scholar 

  • Schinagl RM, Gurskis D, Chen AC, Sah RL (1997) Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J Orthop Res 15:499–506

    Article  PubMed  Google Scholar 

  • Shin D, Athanasiou KA (1997) Biomechanical properties of the individual cell. Trans Orthop Res Soc 22:1, 352

    Google Scholar 

  • Singerman RJ, Petersen DR, Brown TD (1987) Quantitation of pressure sensitive film using digital image scanning. Exp Mech 27:99–105

    Article  Google Scholar 

  • Slemenda C, Brandt KD, Heilman DK, Mazzuca S, Braunstein EM, Katz BP, Wolinsky FD (1997) Quadriceps weakness and osteoarthritis of the knee. Ann Intern Med 127:97–104

    PubMed  Google Scholar 

  • Slemenda C, Heilman DK, Brandt KD, Katz BP, Mazzuca S, Braunstein EM, Byrd D (1998) Reduced quadriceps strength relative to body weight. A risk factor for knee osteoarthritis in women? Arthritis Rheum 41:1951–1959

    Article  PubMed  Google Scholar 

  • Soulhat J, Buschmann MD, Shirazi-Adl A (2000) A fibril-network-reinforced biphasic model of cartilage in unconfined compression. J Biomech Eng 121:150–159

    Google Scholar 

  • Suter E, Herzog W (2000) Does muscle inhibition after knee injury increase the risk of osteoarthritis. Exerc Sport Sci Rev 28:15–18

    PubMed  Google Scholar 

  • Walmsley B, Hodgson JA, Burke RE (1978) Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J Neurophysiol 41:1203–1215

    PubMed  Google Scholar 

  • Walpole LJ (1981) Elastic behavior of composite materials: theoretical foundations. Adv Appl Mech 21:169–242

    MATH  Google Scholar 

  • Wang CC-B, Chahine NO, Hung CT, Ateshian GA (2003) Optical determination of anisotropic material properties of bovine articular cartilage in compression. J Biomech 36:339–353

    Article  PubMed  Google Scholar 

  • Wong M, Wuethrich P, Buschmann MD, Eggli P, Hunziker E (1997) Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res 15:189–196

    Article  PubMed  Google Scholar 

  • Wu JZ, Herzog W (2000) Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests. Ann Biomed Eng 28:318–330

    Article  PubMed  Google Scholar 

  • Wu JZ, Herzog W (2002) Elastic anisotropy of articular cartilage is associated with the micro-structures of collagen fibers and chondrocytes. J Biomech 35:931–942

    Article  PubMed  Google Scholar 

  • Wu JZ, Herzog W, Ronsky J (1996) Modeling axi-symmetrical joint contact with biphasic cartilage layers—an asymptotic solution. J Biomech 29:1263–1281

    Article  PubMed  Google Scholar 

  • Wu JZ, Herzog W, Epstein M (1998) Effects of inserting a pressensor film into articular joints on the actual contact mechanics. J Biomech Eng 120:655–659

    Article  PubMed  Google Scholar 

  • Wu JZ, Herzog W, Epstein M (1999) Modelling of location- and time-dependent deformation of chondrocytes during cartilage loading. J Biomech 32:563–572

    Article  PubMed  Google Scholar 

  • Wu JZ, Herzog W, Epstein M (2000) Joint contact mechanics in the early stages of osteoarthritis. Med Eng Physics 22:1–12

    Article  Google Scholar 

  • Xu WS, Butler DL, Stouffer DC, Grood ES, Glos DL (1992) Theoretical analysis of an implantable force transducer for tendon and ligament structures. J Biomech Eng 114:170–177

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Herzog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herzog, W., Federico, S. Considerations on Joint and Articular Cartilage Mechanics. Biomech Model Mechanobiol 5, 64–81 (2006). https://doi.org/10.1007/s10237-006-0029-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-006-0029-y

Keywords

Navigation