Skip to main content
Log in

Influence of a Superficial Tangential Zone Over Repairing Cartilage Defects: Implications for Tissue Engineering

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The superficial tangential zone (STZ) plays a critical role in normal cartilage function but is not yet a focus for designing tissue-engineered constructs for cartilage repair. Without material properties of sufficient quality in this zone, transplanted constructs in vivo may have little chance of survival. This finite element study investigates the impact of the superficial tangential zone on the mechanical function of normal articular surfaces as well as those with transplanted constructs. The zone is modeled as a thin transversely isotropic material with strain dependent permeability. The analyses predict that a normal transversely isotropic STZ placed over a repair region reduces the axial compression (55–68%) of, and the rate of fluid loss (45–82%) from the articular surface. A reduction was also found in von Mises stress (26–57%), axial strain (22–56%), and radial strain (69–73%), and an increase in fluid pressure (19–45%) in repair tissue under the STZ. Incorporating a quality superficial tangential zone in tissue-engineered constructs may be a critical factor in achieving mechanical environments conducive for successful cartilage repairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida E, Spilker R (1997) Mixed and penalty finite element models for the nonlinear behavior of biphasic soft tissues in finite deformation: part I—Alternate formulations. Comput Methods Biomech Biomed Eng 1(1):25–46

    Article  Google Scholar 

  • Almeida E, Spilker R (1998) Mixed and penalty finite element models for the nonlinear behavior of biphasic soft tissues in finite deformation: part II—Nonlinear examples. Comput Methods Biomech Biomed Eng 1(2):151–170

    Google Scholar 

  • Bartlett W, Gooding C, Carrington R, Skinner J, Briggs T, Bentley G (2005) Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft. J Bone Joint Surg Br 87(3):330–332

    Article  PubMed  Google Scholar 

  • Below S, Arnoczky S, Dodds J, Kooima C, Walter N (2002) The split-line pattern of the distal femur: a consideration in the orientation of autologous cartilage grafts. Arthroscopy 18(6):613–617

    PubMed  Google Scholar 

  • Butler D, Goldstein S, Guilak F (2000) Functional tissue engineering: the role of biomechanics. J Biomech Eng 122(6):570–575

    Article  PubMed  Google Scholar 

  • Chen A, Bae W, Schinagl R, Sah R (2001) Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression. J Biomech 34(1): 1–12

    Article  PubMed  Google Scholar 

  • Cherubino P, Grassi F, Bulgheroni P, Ronga M (2003) Autologous chondrocyte implantation using a bilayer collagen membrane: A preliminary report. J Orthop Surg 11(1):10–15

    Google Scholar 

  • Cohen B, Gardner T, Ateshian G (1993) The influence of transverse isotropy on cartilage indentation behavior: a study of the human humeral head. Trans 39th Ann Mtg Ortho Res Soc

  • DiSilvestro MR, Suh JK (2001) A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J Biomech 34(4): 519–525

    Article  PubMed  Google Scholar 

  • Donzelli P, Spilker R, Ateshian G, Mow V (1999) Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure. J Biomech 32:1037–1047

    Article  PubMed  Google Scholar 

  • Garcia J, Altiero N, Haut R (2000) Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model. J Biomech Eng 122(1):1–8

    Article  PubMed  Google Scholar 

  • Gardner T, Xin L, Mow V (2003) Validation of articular cartilage tensile moduli from transversely isotropic biphasic indentation FEM analysis. Trans ASME 2003 Summer Bioeng Conf

  • Glaser C, Putz R, (2002) Functional anatomy of articular cartilage under compressive loading Quantitative aspects of global, local and zonal reactions of the collagenous network with respect to the surface integrity. Osteoarthr Cartil 10(2) 83–99

    Article  PubMed  Google Scholar 

  • Guilak F, (2004). Biomechanical factors in tissue engineering of articular cartilage. In: Goldberg V, Caplan A (eds). Orthopedic tissue engineering: basic science and practices. Marcel Dekker Publishers, New York

    Google Scholar 

  • Hayes A, Hall A, Cheung I, Brown L, Tubo R, Caterson B (2005) Surface zone but not deep zone chondrocytes reorganise zonal architecture of articular cartilage grafts grown in vitro. Trans 51st Ann Mtg Ortho Res Soc

  • Holmes M, Lai W, Mow V (1985) Singular perturbation analysis of the nonlinear, flow-dependent compressive stress relaxation behavior of articular cartilage. J Biomech Eng 107(3):206–218

    PubMed  Google Scholar 

  • Hou J, Holmes M, Lai W, Mow V (1989) Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications. J Biomech Eng 111(1):78–87

    Article  PubMed  Google Scholar 

  • Huang C, Stankiewicz A, Ateshian G, Mow V (2005) Anisotropy, inhomogeneity, and tension-compression nonlinearity of human glenohumeral cartilage in finite deformation. J Biomech 38:799–809

    Article  PubMed  Google Scholar 

  • Hung C, Lima E, Mauck R, Taki E, LeRoux M, Lu H, Stark R, Guo X, Ateshian G. (2003) Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech 36(12):1853–1864

    Article  PubMed  Google Scholar 

  • Hung C, Mauck R, Wang C, Lima E, Ateshian G (2004) A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading. Ann Biomed Eng 32(1):35–49. Erratum in: Ann Biomed Eng 2004 32(3):510

    Google Scholar 

  • Hutmacher D, Ng K, Kaps C, Sittinger M, Kläring S (2003) Elastic cartilage engineering using novel scaffold architectures in combination with a biomimetic cell carrier. Biomaterials 24(24):4445–4458

    Article  PubMed  Google Scholar 

  • Jeffery A, Blunn G, Archer C, Bentley G (1991) Three-dimensional collagen architecture in bovine articular cartilage. J Bone Joint Surg Br 73(5):795–801

    PubMed  Google Scholar 

  • Korhonen R, Wong M, Arokoski J, Lindgren R, Helminen H, Hunziker E, Jurvelin J (2002) Importance of the superficial tissue layer for the indentation stiffness of articular cartilage. Med Eng Phys 24(2):99–108

    Article  PubMed  Google Scholar 

  • Krishnan R, Kopacz M, Ateshian G (2004) Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J Orthop Res 22(3):565–570

    Article  PubMed  Google Scholar 

  • Krishnan R, Park S, Eckstein F, Ateshian G (2003) Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress. J Biomech Eng 125:569–577

    Article  PubMed  Google Scholar 

  • Kurz B, Jin M, Patwari P, Cheng D, Lark M, Grodzinsky A (2001) Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J Ortho Res 19:1140–1146

    Article  Google Scholar 

  • Lai W, Mow V (1980) Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17(1–2):111–123

    PubMed  Google Scholar 

  • Li L, Buschmann M, Shirazi-Adl A (2000) A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J Biomech 33:1533–1541

    Article  PubMed  Google Scholar 

  • Li L, Buschmann M, Shirazi-Adl A (2003) Strain-rate dependent stiffness of articular cartilage in unconfined compression. J Biomech Eng 125(2):161–168. Erratum in: J Biomech Eng 2003 125(4):566

    Google Scholar 

  • Ma P, Langer R (1999) Morphology and mechanical function of long-term in vitro engineered cartilage. J Biomed Mater Res 44(2):217–221

    Article  PubMed  Google Scholar 

  • Ma P, Schloo B, Mooney D, Langer R (1995) Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J Biomed Mater Res 29(12):1587–1595

    Article  PubMed  Google Scholar 

  • Martin I, Obradovic B, Treppo S, Grodzinsky A, Langer R, Freed L, Vunjak-Novakovic G (2000) Modulation of the mechanical properties of tissue engineered cartilage. Biorheology 37(1–2):141–147

    PubMed  Google Scholar 

  • Mizrahi J, Maroudas A, Lanir Y, Ziv I, Webber T (1986) The “instantaneous” deformation of cartilage: Effects of collagen fiber orientation and osmotic stress. Biorheology 23(4):311–330

    PubMed  Google Scholar 

  • Mow V, Good P, Gardner T (2000) A new method to determine the tensile properties of articular cartilage using the indentation test. Trans 46th Ann Mtg Ortho Res Soc

  • Mow V, Lai W, Holmes M (1982). Advanced theoretical and experimental techniques in cartilage research. In: Huiskes R, VanCampen D, DeWijn J (eds). Biomechanics: principle and applications, vol I. Martinus Nijhoff Publishers, The Hague

    Google Scholar 

  • Muir H, Bullough P, Maroudas A (1970) The distribution of collagen in human articular cartilage with some of its physiological implications. J Bone Joint Surg Br 52(3):554–563

    PubMed  Google Scholar 

  • Mukherjee N, Wayne J (1998a) Load sharing between solid and fluid phases in articular cartilage. I. Experimental determination of in situ mechanical conditions in a porcine knee. J Biomech Eng 120(5):614–619

    Article  Google Scholar 

  • Mukherjee N, Wayne J (1998b) Load sharing between solid and fluid phases in articular cartilage. II. Comparison of experimental results and u-p finite element predictions. J Biomech Eng 120(5):620–624

    Article  Google Scholar 

  • Olsen S, Oloyede A, Adam C (2004) A finite element formulation and program to study transient swelling and load-carriage in healthy and degenerate articular cartilage. Comput Methods Biomech Biomed Eng 7(2):111–120

    Article  Google Scholar 

  • Roth V, Mow V (1980) The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J Bone Joint Surg Am 62(7):1102–1117

    PubMed  Google Scholar 

  • Ronga M, Federico G, Paolo B (2004) Arthroscopic autologous chondrocyte implantation for the treatment of a chondral defect in the tibial plateau of the knee. Arthroscopy 20(1):79–84

    Article  PubMed  Google Scholar 

  • Setton L, Zhu W, Mow V (1993) The biphasic poroviscoelastic behavior of articular cartilage: Role of the surface zone in governing the compressive behavior. J Biomech 26(4/5):581–592

    Article  PubMed  Google Scholar 

  • Schafer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed L (2002) Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum 46(9):2524–2534

    Article  PubMed  Google Scholar 

  • Sharma B, Khan M, Park H, Elisseeff J (2005) Engineering of zonally organized cartilage in a subcutaneous in vivo model. Trans 51st Ann Mtg Ortho Res Soc

  • Smith C, Goldberg V, Mansour J (2001) Analysis of the mechanical environment in a repairing osteochondral defect. Trans 47th Ann Mtg Ortho Res Soc

  • Soltz M, Ateshian G (2000) A conewise linear elasticity mixture model for the analysis of tension-compression nonlinearity in articular cartilage. J Biomech Eng 122(6):576–586

    Article  PubMed  Google Scholar 

  • Toolan B, Frenkel S, Pachence J, Yalowitz L, Alexander H (1996) Effects of growth-factor-enhanced culture on a chondrocyte-collagen implant for cartilage repair. J Biomed Mater Res 31(2):273– 280

    Article  PubMed  Google Scholar 

  • Torzilli P (1993) Effects of temperature, concentration and articular surface removal on transient solute diffusion in articular cartilage. Med Biol Eng Comp 31(Suppl): S93–S98

    Article  Google Scholar 

  • Torzilli P, Dethmers D, Rose D, Schryuer H (1983) Movement of intersitial water through loaded articular cartilage. J Biomech 16(3):169–179

    Article  PubMed  Google Scholar 

  • Wayne J (1995) Load partitioning influences the mechanical response of articular cartilage. Ann Biomed Eng 23:40–47

    Article  PubMed  Google Scholar 

  • Wayne J, Mukherjee N (1997) In situ mechanical behavior of a repaired articular surface. ASME Adv Bioengi BED 36:201–202

    Google Scholar 

  • Wayne J, Woo S, Kwan M (1991) Finite element analyses of repaired articular surfaces. J Eng Med Proc Inst Mech Eng(H) 205(3):155–162

    Article  Google Scholar 

  • Wilson W, van Donkelaar C, van Rietbergen B, Ito K, Huiskes R (2004) Stresses in the local collagen network of articular cartilage: A poroviscoelastic fibril-reinforced finite element study. J Biomech 37(3):357–366

    Article  PubMed  Google Scholar 

  • Wu J, Herzog W, Epstein M (1998) Evaluation of the finite element software ABAQUS for biomechanical modeling of biphasic tissues. J Biomech 31:165–169

    Article  PubMed  Google Scholar 

  • Xu J, Zaporojan V, Peretti G, Roses R, Morse K, Roy A, Mesa J, Randolph M, Bonassar L, Yaremchuk M (2004) Injectable tissue-engineered cartilage with different chondrocyte sources. Plast Reconstr Surg 113(5):1361–1371

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Wayne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, J.R., Wayne, J.S. Influence of a Superficial Tangential Zone Over Repairing Cartilage Defects: Implications for Tissue Engineering. Biomech Model Mechanobiol 5, 102–110 (2006). https://doi.org/10.1007/s10237-006-0022-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-006-0022-5

Keywords

Navigation