Skip to main content

Advertisement

Log in

Mechanobiology of soft skeletal tissue differentiation—a computational approach of a fiber-reinforced poroelastic model based on homogeneous and isotropic simplifications

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The material properties of multipotent mesenchymal tissue change dramatically during the differentiation process associated with skeletal regeneration. Using a mechanobiological tissue differentiation concept, and homogeneous and isotropic simplifications of a fiber-reinforced poroelastic model of soft skeletal tissues, we have developed a mathematical approach for describing time-dependent material property changes during the formation of cartilage, fibrocartilage, and fibrous tissue under various loading histories. In this approach, intermittently imposed fluid pressure and tensile strain regulate proteoglycan synthesis and collagen fibrillogenesis, assembly, cross-linking, and alignment to cause changes in tissue permeability (k), compressive aggregate modulus (H A), and tensile elastic modulus (E). In our isotropic model, k represents the permeability in the least permeable direction (perpendicular to the fibers) and E represents the tensile elastic modulus in the stiffest direction (parallel to the fibers). Cyclic fluid pressure causes an increase in proteoglycan synthesis, resulting in a decrease in k and increase in H A caused by the hydrophilic nature and large size of the aggregating proteoglycans. It further causes a slight increase in E owing to the stiffness added by newly synthesized type II collagen. Tensile strain increases the density, size, alignment, and cross-linking of collagen fibers thereby increasing E while also decreasing k as a result of an increased flow path length. The Poisson's ratio of the solid matrix, ν s, is assumed to remain constant (near zero) for all soft tissues. Implementing a computer algorithm based on these concepts, we simulate progressive changes in material properties for differentiating tissues. Beginning with initial values of E=0.05 MPa, H A=0 MPa, and k=1×10–13 m4/Ns for multipotent mesenchymal tissue, we predict final values of E=11 MPa, H A=1 MPa, and k=4.8×10–15 m4/Ns for articular cartilage, E=339 MPa, H A=1 MPa, and k=9.5×10–16 m4/Ns for fibrocartilage, and E=1,000 MPa, H A=0 MPa, and k=7.5×10–16 m4/Ns for fibrous tissue. These final values are consistent with the values reported by other investigators and the time-dependent acquisition of these values is consistent with current knowledge of the differentiation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5. a
Fig. 6.

Similar content being viewed by others

References

  • Akizuki S, Mow VC, Müller F, Pita JC, Howell DS, Manicourt DH (1986) Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res 4:379–392

    CAS  PubMed  Google Scholar 

  • Armstrong CG, Lai WM, Mow VC (1984) An analysis of the unconfined compression of articular cartilage. J Biomech Eng 106:165–173

    CAS  PubMed  Google Scholar 

  • Ateshian GA, Lai WM, Zhu WB, Mow VC (1994) An asymptotic solution for the contact of two biphasic cartilage layers. J Biomech 27:1347–1360

    CAS  PubMed  Google Scholar 

  • Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC (1997) Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech 30:1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Athanasiou KA, Agarwal A, Dzida FJ (1994) Comparative study of the intrinsic mechanical properties of the human acetabular and femoral head cartilage. J Orthop Res 12:340–349.

    CAS  PubMed  Google Scholar 

  • Athanasiou KA, Rosenwasser MP, Buckwalter JA, Malinin TI, Mow VC (1991) Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J Orthop Res 9:330–340

    CAS  PubMed  Google Scholar 

  • Atkinson TS, Haut RC, Altiero NJ (1997) A poroelastic model that predicts some phenomenological responses of ligaments and tendons. J Biomech Eng 119:400–405

    CAS  PubMed  Google Scholar 

  • Beynnon B, Howe JG, Pope MH, Johnson RJ, Fleming BC (1992) The measurement of anterior cruciate ligament strain in vivo. Int Orthop 16:1–12

    Google Scholar 

  • Biot M (1941) General theory of three-dimensional consolidation. J Appl Phys 12:155–164

    Google Scholar 

  • Biot M (1955) Theory of elasticity and consolidation for a porous anisotropic solid. J Appl Phys 26:182–185

    CAS  Google Scholar 

  • Brown TD, Singerman RJ (1986) Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondroepiphysis. J Biomech 19:597–605

    CAS  PubMed  Google Scholar 

  • Carter DR, Beaupré GS (2001) Skeletal tissue regeneration. In: Skeletal function and form: mechanobiology of skeletal development, aging and regeneration. Cambridge University Press, Cambridge

  • Carter DR, Beaupré, GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 331(355 Suppl):S41–S55

    Google Scholar 

  • Carter DR, Giori N (1991) Effect of mechanical stress on tissue differentiation in the bony implant bed. In: Davies J (ed) The bone–biomaterial interface. University of Toronto Press, Toronto, pp 367–379

  • Carter DR, Loboa Polefka EG, Beaupré GS (2000) Mechanical influences on skeletal regeneration. In: Human biomechanics and injury prevention. Springer-Verlag, Berlin Heidelberg New York, pp 129–136

  • Chen CT, Malkus DS, Vanderby R, Jr (1998) A fiber matrix model for interstitial fluid flow and permeability in ligaments and tendons. Biorheology 35:103–118

    Article  CAS  PubMed  Google Scholar 

  • Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32:255–266

    Article  CAS  PubMed  Google Scholar 

  • Derwin KA, Soslowsky LJ, Green WD, Elder SH (1994) A new optical system for the determination of deformations and strains: calibration characteristics and experimental results. J Biomech 27:1277–1285

    CAS  PubMed  Google Scholar 

  • Elliott DM, Guilak F, Vail TP, Wang JY, Setton LA (1999) Tensile properties of articular cartilage are altered by meniscectomy in a canine model of osteoarthritis. J Orthop Res 17:503–508

    CAS  PubMed  Google Scholar 

  • Evanko SP, Vogel KG (1990) Ultrastructure and proteoglycan composition in the developing fibrocartilaginous region of bovine tendon. Matrix 10:420–436

    CAS  PubMed  Google Scholar 

  • Giori NJ, Beaupré GS, Carter DR (1993) Cellular shape and pressure may mediate mechanical control of tissue composition in tendons. J Orthop Res 11:581–591

    CAS  PubMed  Google Scholar 

  • Giori NJ, Ryd L, Carter DR (1995) Mechanical influences on tissue differentiation at bone-cement interfaces. J Arthrop 10:514–522

    CAS  Google Scholar 

  • Gu WY, Mao XG, Foster RJ, Weidenbaum M, Mow VC, Rawlins BA (1999) The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content. Spine 24:2449–2455

    Article  CAS  PubMed  Google Scholar 

  • Haridas B, Butler D, Malaviya P, Awad H, Boivin G, Smith F (1998) In vivo stresses correlate with cellular morphology in the fibrocartilage-rich region of the rabbit flexor tendon. In: Proceedings of the 44th Annual Meeting, Orthopaedic Research Society, New Orleans,La.

  • Higginson GR, Snaith JE (1979) The mechanical stiffness of articular cartilage in confined oscillating compression. Eng Med 8:11–14

    Google Scholar 

  • Hodge WA, Carlson KL, Fijan RS, Burgess RG, Riley PO, Harris WH, Mann RW (1989) Contact pressures from an instrumented hip endoprosthesis. J Bone Joint Surg Am 71:1378–1386.

    CAS  PubMed  Google Scholar 

  • Howard PS, Kucich U, Taliwal R, Korostoff JM (1998) Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodont Res 33:500–508

    CAS  PubMed  Google Scholar 

  • Huiskes R, van Driel W, Prendergast P, Soballe K (1997) A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J Mater Sci Mater Med 8:785–788

    Article  CAS  Google Scholar 

  • Ilizarov GA (1989) The tension–stress effect on the genesis and growth of tissues. Part I. The influence of stability of fixation and soft-tissue preservation. Clin Orthop 238:249–281

    PubMed  Google Scholar 

  • Joshi MD, Suh JK, Marui T, Woo SL (1995) Interspecies variation of compressive biomechanical properties of the meniscus. J Biomed Mater Res 29:823–828

    CAS  PubMed  Google Scholar 

  • Jurvelin JS, Buschmann MD, Hunziker EB (1997) Optical and mechanical determination of Poisson's ratio of adult bovine humeral articular cartilage. J Biomech 30:235–241

    Article  CAS  PubMed  Google Scholar 

  • Kember NF, Sissons HA (1976) Quantitative histology of the human growth plate. J Bone Joint Surg Br 58:426–435

    Google Scholar 

  • Klein-Nulend J, Veldhuijzen JP, van de Stadt RJ, van Kampen GP, Kuijer R, Burger EH (1987) Influence of intermittent compressive force on proteoglycan content in calcifying growth plate cartilage in vitro. J Biol Chem 262: 15490–15495

    CAS  PubMed  Google Scholar 

  • Lai W, Mow V (1980) Drag-induced compression of articular cartilage during a permeation experiment. Biorheology 17:111–123

    CAS  PubMed  Google Scholar 

  • Levenston M, Frank E, Grodzinsky A (1998) Variationally derived 3-field finite element formulations for quasistatic poroelastic analysis of hydrated biological tissues. Comput Meth Appl Mech Eng 156:231–246

    Article  Google Scholar 

  • Li LP, Buschmann MD, Shirazi-Adl A (2000) A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J Biomech 33:1533–1541

    Article  CAS  PubMed  Google Scholar 

  • Li LP, Soulhat J, Buschmann MD, Shirazi-Adl A (1999) Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin Biomech 14:673–682

    Article  CAS  Google Scholar 

  • Liu GT, Lavery LA, Schenck RC, Jr, Lanctot DR, Zhu CF, Athanasiou KA (1997) Human articular cartilage biomechanics of the second metatarsal intermediate cuneiform joint. J Foot Ankle Surg 36:367–374

    CAS  PubMed  Google Scholar 

  • Loboa E, Beaupré G, Carter D (2001) Mechanobiology of initial pseudarthrosis formation with oblique fractures. J Orthop Res 19:1067–1072

    Article  CAS  PubMed  Google Scholar 

  • Mansour JM, Mow VC (1976) The permeability of articular cartilage under compressive strain and at high pressures. J Bone Joint Surg Am 58:509–516

    CAS  PubMed  Google Scholar 

  • Maroudas A, Muir H, Wingham J (1969) The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim Biophys Acta 177:492–500

    Article  CAS  PubMed  Google Scholar 

  • Meroi EA, Natali AN (1989) A numerical approach to the biomechanical analysis of bone fracture healing. J Biomed Eng 11:390–397

    CAS  PubMed  Google Scholar 

  • Mikic B, Carter DR (1995) Bone strain gage data and theoretical models of functional adaptation. J Biomech 28:465–469

    Article  CAS  PubMed  Google Scholar 

  • Mow VC, Gibbs MC, Lai WM, Zhu WB, Athanasiou KA (1989) Biphasic indentation of articular cartilage—II. A numerical algorithm and an experimental study. J Biomech 22:853–861

    CAS  PubMed  Google Scholar 

  • Mow VC, Holmes MH, Lai WM (1984) Fluid transport and mechanical properties of articular cartilage: a review. J Biomech 17:377–394

    CAS  PubMed  Google Scholar 

  • Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 102:73–84

    CAS  PubMed  Google Scholar 

  • Mow VC, Zhu W, Ratcliffe A (1991) Structure and function of articular cartilage and meniscus. In: Mow VC, Hayes WC (eds) Basic orthopaedic biomechanics. Raven Press, New York, pp 143–198

  • Pauwels F (1980) Biomechanics of the locomotor apparatus : contributions on the functional anatomy of the locomotor apparatus. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Perren S, Cordey J (1980) The concept of interfragmentary strain. In: Uhthoff HK (ed) Current concepts of internal fixation of fractures. Springer-Verlag, New York Berlin Heidelberg, pp 63–77

  • Prendergast PJ, Huiskes R, Søballe K (1997) ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30:539–548

    Article  CAS  PubMed  Google Scholar 

  • Proctor CS, Schmidt MB, Whipple RR, Kelly MA, Mow VC (1989) Material properties of the normal medial bovine meniscus. J Orthop Res 7:771–782

    CAS  PubMed  Google Scholar 

  • Rockwood CA, Green DP, Bucholz RW (1991) Rockwood and Green's fractures in adults. Lippincott, Philadelphia, Pa.

  • Roth V, Mow VC (1980) The intrinsic tensile behavior of the matrix of bovine articular cartilage and its variation with age. J Bone Joint Surg Am 62:1102–1117

    CAS  PubMed  Google Scholar 

  • Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Technol 28:385–397

    CAS  Google Scholar 

  • Smith RL, Rusk SF, Ellison BE, Wessells P, Tsuchiya K, Carter DR, Caler WE, Sandell LJ, Schurman DJ (1996) In vitro stimulation of articular chondrocyte mRNA and extracellular matrix synthesis by hydrostatic pressure. J Orthop Res 14:53–60

    CAS  PubMed  Google Scholar 

  • Soltz MA, Ateshian GA (1998) Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J Biomech 31:927–934

    Article  CAS  PubMed  Google Scholar 

  • Soltz MA, Ateshian GA (2000) Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann Biomed Eng 28:150–159

    Article  CAS  PubMed  Google Scholar 

  • Soulhat J, Buschmann MD, Shirazi-Adl A (1999) A fibril-network-reinforced biphasic model of cartilage in unconfined compression. J Biomech Eng 121:340–347

    CAS  PubMed  Google Scholar 

  • Spilker RL, Donzelli PS, Mow VC (1992) A transversely isotropic biphasic finite element model of the meniscus. J Biomech 25:1027–1045

    CAS  PubMed  Google Scholar 

  • Tissakht M, Ahmed AM (1995) Tensile stress–strain characteristics of the human meniscal material. J Biomech 28:411–422

    Article  CAS  PubMed  Google Scholar 

  • Vogel KG, Ordög A, Pogány G, Oláh J (1993) Proteoglycans in the compressed region of human tibialis posterior tendon and in ligaments. J Orthop Res 11:68–77

    CAS  PubMed  Google Scholar 

  • Weiss J, Maakestad B, Nisbet J (2000) The permeability of human medial collateral ligament. In: Proceedings of the 46th Annual Meeting, Orthopaedic Research Society, Orlando, Fl.

  • Wren TA, Beaupré GS, Carter DR (1998) A model for loading-dependent growth, development, and adaptation of tendons and ligaments. J Biomech 31:107–114

    Article  CAS  PubMed  Google Scholar 

  • Wren TA, Beaupré GS, Carter DR (2000) Mechanobiology of tendon adaptation to compressive loading through fibrocartilaginous metaplasia. J Rehabil Res Dev 37:135–143

    CAS  PubMed  Google Scholar 

  • Wren TA, Carter DR (1998) A microstructural model for the tensile constitutive and failure behavior of soft skeletal connective tissues. J Biomech Eng 120:55–61

    CAS  PubMed  Google Scholar 

  • Yamamoto N, Hayashi K, Kuriyama H, Ohno K, Yasuda K, Kaneda K (1992) Mechanical properties of the rabbit patellar tendon. J Biomech Eng 114: 332–337

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Jay Henderson, Sandra Shefelbine, and Dr. R. Lane Smith for their helpful suggestions. Support for this work was provided by VA Merit Review project A501–4RA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Loboa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loboa, E.G., Wren, T.A.L., Beaupré, G.S. et al. Mechanobiology of soft skeletal tissue differentiation—a computational approach of a fiber-reinforced poroelastic model based on homogeneous and isotropic simplifications. Biomech Model Mechanobiol 2, 83–96 (2003). https://doi.org/10.1007/s10237-003-0030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-003-0030-7

Keywords

Navigation