Skip to main content

Advertisement

Log in

M2 tidal dynamics in Bohai and Yellow Seas: a hybrid data assimilative modeling study

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

A high-resolution hybrid data assimilative (DA) modeling system is adapted to study the M2 barotropic tidal characteristics and dynamics in the Bohai and Yellow Seas. In situ data include tidal harmonics extracted from both coastal sea level and bottom pressure observations. The hybrid DA system consists of both forward and inverse models. The former is three-dimensional, finite-difference, nonlinear Regional Ocean Modeling System (ROMS). The latter is a three-dimensional, linearized, frequency-domain, finite-element model TRUXTON. The DA system assimilates in situ observations via the inversion of the barotropic tidal open boundary conditions (OBCs). Model skill is evaluated by comparing misfits between the observed and modeled tidal harmonics. The assimilation scheme is found effective and efficient in correcting the tidal OBCs, which in turn improves ROMS tidal solutions. Up to 50% reduction of model/data misfits is achieved after data assimilation. M2 co-tidal maps constructed from the posterior (data assimilative) ROMS solutions agree well with observational analysis of (Fang et al. 2004). Detailed analyses on tidal mixing, residual current, energy flux, dissipation, and momentum term balance dynamics are performed for M2 constituent, revealing complex M2 tidal characteristics in the study region and the important role of coastal geometry and topography in affecting regional tidal dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • An HS (1977) A numerical experiment of the M2 tide in the Yellow Sea. J Oceanogr 33(2):103–110

    Google Scholar 

  • Aretxabaleta A et al (2005) Data assimilative hindcast on the Southern Flank of Georges Bank during May 1999: frontal circulation and implications. Cont Shelf Res 25(7–8):849–874

    Article  Google Scholar 

  • Bao X et al (2001) Three dimensional simulation of tide and tidal current characteristics in the East China Sea. Oceanol Acta 24(2):135–149

    Article  Google Scholar 

  • Choi BH (1980) A tidal model of the Yellow Sea and the Eastern China Sea. Korea Ocean Research and Development Institute, Seoul

    Google Scholar 

  • Choi BH et al (2003) A synchronously coupled tide-wave-surge model of the Yellow Sea. Coast Eng 47(4):381–398

    Article  Google Scholar 

  • Davies AM et al (1998) A three-dimensional model of wind-driven circulation on the shelf application to the storm of January 1993. Cont Shelf Res 18(2–4):289–340

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2):183–204

    Article  Google Scholar 

  • Egbert GD et al (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res 99(C12):24821–24852

    Article  Google Scholar 

  • Fang G (1986) Tide and tidal current charts for the marginal seas adjacent to China. In: Zhou D (ed) Oceanology of China Seas. Kluwer Academic Publishers, Dordrecht, pp 101–112

    Google Scholar 

  • Fang G (1994) Tides and tidal currents in East China Sea, Huanghai Sea and Bohai Sea. Oceanology of China seas 101–112

  • Fang G, Yang J (1985) A two-dimensional numerical model of the tidal motions in the Bohai Sea. Chin J Oceanol Limnol 3(2):135–152

    Article  Google Scholar 

  • Fang G et al (2004) Empirical cotidal charts of the Bohai, Yellow, and East China Seas from 10 years of TOPEX/Poseidon altimetry. J Geophys Res Oceans 109(C11):C11006

    Article  Google Scholar 

  • Flather RA (1976) A tidal model of the northwest European continental shelf. Mem Soc R Sci Liege 10(6):141–164

    Google Scholar 

  • Foreman (1979) Manual for tidal heights analysis and prediction. Institute of Ocean Sciences, Patricia Bay

  • Greenberg DA (1979) A numerical model investigation of tidal phenomena in the Bay of Fundy and Gulf of Maine. Mar Geodesy 2(2):161–187

    Article  Google Scholar 

  • Han G et al (2001) Optimizing open boundary conditions of nonlinear tidal model using adjoint method, ii: Assimilation experiment for tide in the Yellow Sea and East China Sea. Acta Oceanol Sin 23(2):25–31

    Google Scholar 

  • Hao W et al (2003) Tidal front and the convergence of anchovy (Engraulis japonicus) eggs in the Yellow Sea. Fish Oceanogr 12(45):434–442

    Article  Google Scholar 

  • He R, Wilkin JL (2006) Barotropic tides on the southeast New England shelf: a view from a hybrid data assimilative modeling approach. J Geophys Res 111(C08002)

  • He R, McGillicuddy DJ, Smith KW, Lynch DR, Stock CA, Manning JP (2005) Data assimilative hindcast of the Gulf of Maine coastal circulation. J Geophys Res 110(C10):C10011. doi:10.1029/2004JC002807

    Article  Google Scholar 

  • Hickox R et al (2000) Climatology and seasonal variability of ocean fronts in the East China, Yellow and Bohai Seas from satellite SST data. Geophys Res Lett 27(18):2945–2948

    Article  Google Scholar 

  • Huang D et al (1999) Modelling the seasonal thermal stratification and baroclinic circulation in the Bohai Sea. Cont Shelf Res 19(11):1485–1505

    Article  Google Scholar 

  • Hyun JH et al (1999) Tidally induced changes in bacterial growth and viability in the macrotidal Han River estuary, Yellow Sea. Estuar Coast Shelf Sci 48(2):143–153

    Article  Google Scholar 

  • Kang SK et al (1998) Fine grid tidal modeling of the Yellow and East China Seas. Cont Shelf Res 18(7):739–772

    Article  Google Scholar 

  • Kang SK et al (2002) Two-layer tidal modeling of the Yellow and East China Seas with application to seasonal variability of the M2 tide. J Geophys Res 107(C3):3020

    Article  Google Scholar 

  • Kantha LH et al (1995) Barotropic tides in the global oceans from a nonlinear tidal model assimilating altimetric tides: 2. Altimetric and geophysical implications. J Geophys Res 100(25):309–325

    Google Scholar 

  • Larsen LH et al (1985) East China Sea tide currents. Cont Shelf Res 4(1–2):77–103

    Article  Google Scholar 

  • Lee SH, Beardsley RC (1999) Influence of stratification on residual tidal currents in the Yellow Sea. J Geophys Res-Oceans 104(C7), 15, 615-679, 701

    Google Scholar 

  • Lee JC, Jung KT (1999) Application of eddy viscosity closure models for the M2 tide and tidal currents in the Yellow Sea and the East China Sea. Cont Shelf Res 19(4):445–475

    Article  Google Scholar 

  • Lefevre F et al (2000) How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea. J Geophys Res 105(C4):8707–8725

    Article  Google Scholar 

  • Lie HJ (1989) Tidal fronts in the southeastern Hwanghae (Yellow Sea). Cont Shelf Res 9(6):527–546

    Article  Google Scholar 

  • Lie HJ et al (2002) Computation methods of major tidal currents from satellite-trackeddrifter positions, with application to the Yellow and East China Seas. J Geophys Res Oceans 107(C1):3003

    Article  Google Scholar 

  • Lu XQ, Fang GH (2002) Inversion of the Tides on the Open Boundary of the BOHAI SEA by Adjoint Method. Oceanol ET Limnol Sin 33(2):113–120

    Google Scholar 

  • Lu X et al (2009) Upwelling and surface cold patches in the Yellow Sea in summer: Effects of tidal mixing on the vertical circulation. Cont Shelf Res

  • Lynch DR, Naimie CE (1993) The M2 Tide and Its Residual on the Outer Banks of the Gulf of Maine. J Phys Oceanogr 23(10):2222–2253

    Article  Google Scholar 

  • Lynch DR et al (1998) Hindcasting the Georges Bank circulation. part I:: detiding. Cont Shelf Res 18(6):607–639

    Article  Google Scholar 

  • Lynch D et al (2004) Forecasting the coastal ocean: Resolution, tide, and operational data in the South Atlantic Bight. J Atmos Ocean Technol 21(7):1074–1085

    Article  Google Scholar 

  • Marchesiello P et al (2001) Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3(1–2):1–20

    Article  Google Scholar 

  • McIntosh PC, Bennett AF (1984) Open ocean modeling as an inverse problem: M2 tides in Bass Strait. J Phys Oceanogr 14(3):601–614

    Article  Google Scholar 

  • Munk W (1997) Once again: once again—tidal friction. Prog Oceanogr 40(1–4):7–35

    Article  Google Scholar 

  • Naimie CE, Lynch DR (2001) Inversion skill for limited-area shelf modeling. Part I: An OSSE case study. Cont Shelf Res 21(11–12):1121–1137

    Article  Google Scholar 

  • Naimie CE et al (2001) Seasonal Mean Circulation in the Yellow Sea - A Model-Generated Climatology. Cont Shelf Res 21(6–7):667–695

    Article  Google Scholar 

  • Ogura S (1933) The tides in the seas adjacent to Japan, Hydrographic Dept

  • Pawlowicz R et al (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci UK 28(8):929–937

    Article  Google Scholar 

  • Prandle D (1982) The vertical structure of tidal currents. Geophys Astrophys Fluid Dyn 22(1–2):29–49

    Article  Google Scholar 

  • Provost CL, Lyard F (1997) Energetics of the M2 barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model. Prog Oceanogr 40(1–4):37–52

    Article  Google Scholar 

  • Shum CK et al (1997) Accuracy assessment of recent ocean tide models. J Geophys Res 102(C11), 25, 125-173, 194

    Google Scholar 

  • Sikiric MD et al (2009) A new approach to bathymetry smoothing in sigma-coordinate ocean models. Ocean Model 29(2):128–136

    Article  Google Scholar 

  • Simpson JH, Hunter JR (1974) Fronts in the Irish Sea. Nature 250:404–406

    Article  Google Scholar 

  • Taylor GI (1919) Tidal friction in the Irish Sea. Proc R Soc London Ser A 96(678):330

    Article  Google Scholar 

  • Teague WJ et al (1998) Current and tide observations in the southern Yellow Sea. J Geophys Res-Oceans 103(C12), 27, 727-783, 793

    Google Scholar 

  • Thomson RE, Emery WJ (2001) Data analysis methods in physical oceanography, 2nd and rev. ed. ed., 638pp., Elsevier, Amsterdam

  • Wang Y et al (2004) Tides of the Bohai, Yellow and East China Seas by assimilating gauging station data into a hydrodynamic model, in Advances in marine science, edited, pp. 253-274.

  • Xia C et al (2006) Three-dimensional structure of the summertime circulation in the Yellow Sea from a wave-tide-circulation coupled model. J Geophys Res Oceans 111(C11):C11S–C13S

    Article  Google Scholar 

  • Zhao B et al (1993) Numerical modeling on the tides and tidal currents in the Eastern China Sea, edited

  • Zimmerman J (1978) Topographic generation of residual circulation by oscillatory (tidal) currents. Geophys Astrophys Fluid Dyn 11(1):35–47

    Article  Google Scholar 

  • Zu T et al (2008) Numerical study of the tide and tidal dynamics in the South China Sea. Deep Sea Res Part I: Oceanogr Res Pap 55(2):137–154

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruoying He.

Additional information

Responsible Editor: Jarle Berntsen

This article is part of the Topical Collection on the 3rd International Workshop on Modelling the Ocean 2011

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Z., He, R., Bao, X. et al. M2 tidal dynamics in Bohai and Yellow Seas: a hybrid data assimilative modeling study. Ocean Dynamics 62, 753–769 (2012). https://doi.org/10.1007/s10236-011-0517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-011-0517-1

Keywords

Navigation