Skip to main content
Log in

Asymmetry and Microstructure of Temporal-Suppression Patterns in Basilar-Membrane Responses to Clicks: Relation to Tonal Suppression and Traveling-Wave Dispersion

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

The cochlea’s wave-based signal processing allows it to efficiently decompose a complex acoustic waveform into frequency components. Because cochlear responses are nonlinear, the waves arising from one frequency component of a complex sound can be altered by the presence of others that overlap with it in time and space (e.g., two-tone suppression). Here, we investigate the suppression of basilar-membrane (BM) velocity responses to a transient signal (a test click) by another click or tone. We show that the BM response to the click can be reduced when the stimulus is shortly preceded or followed by another (suppressor) click. More surprisingly, the data reveal two curious dependencies on the interclick interval, Δt. First, the temporal suppression curve (amount of suppression vs. Δt) manifests a pronounced and nearly periodic microstructure. Second, temporal suppression is generally strongest not when the two clicks are presented simultaneously (Δt = 0), but when the suppressor click precedes the test click by a time interval corresponding to one to two periods of the best frequency (BF) at the measurement location. By systematically varying the phase of the suppressor click, we demonstrate that the suppression microstructure arises from alternating constructive and destructive interference between the BM responses to the two clicks. And by comparing temporal and tonal suppression in the same animals, we test the hypothesis that the asymmetry of the temporal-suppression curve around Δt = 0 stems from cochlear dispersion and the well-known asymmetry of tonal suppression around the BF. Just as for two-tone suppression, BM responses to clicks are most suppressed by tones at frequencies just above the BF of the measurement location. On average, the frequency place of maximal suppressibility of the click response predicted from temporal-suppression data agrees with the frequency at which tonal suppression peaks, consistent with our hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Altoè A, Pulkki V, Verhulst S (2014) Transmission line cochlear models: improved accuracy and efficiency. J Acoust Soc Am 136:EL302–EL308

    Article  PubMed  Google Scholar 

  • Altoè A, Charaziak KK, Shera CA (2017) Dynamics of cochlear nonlinearity: automatic gain control or instantaneous damping? J Acoust Soc Am 142:3510–3519

    Article  PubMed  PubMed Central  Google Scholar 

  • Bianchi F, Verhulst S, Dau T (2013) Experimental evidence for a cochlear source of the precedence effect. J Assoc Res Otolaryngol 14:767–779

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown AD, Stecker GC, Tollin DJ (2015) The precedence effect in sound localization. J Assoc Res Otolaryngol 16:1–28

    Article  PubMed  Google Scholar 

  • Charaziak KK, Shera CA (2016) Temporal suppression of clicked-evoked otoacoustic emissions measured over a wide frequency range. Assoc Res Otolaryngol, Abstr: PS-666 39:405

  • Charaziak KK, Siegel JH (2014) Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas. J Assoc Res Otolaryngol 15:883–896

    Article  PubMed  PubMed Central  Google Scholar 

  • Charaziak KK, Siegel JH (2015) Low-frequency tone-pip-evoked otoacoustic emissions originate over a broad cochlear region in chinchillas. In: mechanics of hearing: protein to perception (Karavitaki KD, Corey DP, eds), p 090016

  • Charaziak KK, Dong W, Shera CA (2018) Temporal suppression of clicked-evoked otoacoustic emissions and basilar-membrane motion in gerbils AIP conference proceedings 1965

  • Charaziak KK, Altoè A, Dong W, Shera CA (2019) Ringing in basilar-membrane responses to clicks - effect on the tonotopic map. Assoc Res Otolaryngol, Abstr: PS-174 42:99

  • Cody AR (1992) Acoustic lesions in the mammalian cochlea: implications for the spatial distribution of the ‘active process’. Hear Res 62:166–172

    Article  CAS  PubMed  Google Scholar 

  • Cooper NP (1996) Two-tone suppression in cochlear mechanics. J Acoust Soc Am 99:3087–3098

    Article  CAS  PubMed  Google Scholar 

  • Cooper NP (1998) Harmonic distortion on the basilar membrane in the basal turn of the guinea-pig cochlea. J Physiol 509(Pt 1):277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper N (2000) Basilar membrane vibrations in the basal turn of the gerbil cochlea. Assoc Res Otolaryngol Abstr 23:205

    Google Scholar 

  • Cooper NP, van der Heijden M (2016) Dynamics of cochlear nonlinearity. Adv Exp Med Biol 894:267–273

    Article  PubMed  Google Scholar 

  • Dewey JB, Applegate BE, Oghalai JS (2019) Amplification and suppression of traveling waves along the mouse organ of Corti: evidence for spatial variation in the longitudinal coupling of outer hair cell-generated forces. J Neurosci:2608–2618

  • Dong W, Olson ES (2013) Detection of cochlear amplification and its activation. Biophys J 105:1067–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong W, Olson ES (2016) Two-tone suppression of simultaneouse electrical and mechanical responses in the cochlea. Biophys J 111:1805–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher JA, Nin F, Reichenbach T, Uthaiah RC, Hudspeth AJ (2012) The spatial pattern of cochlear amplification. Neuron 76:989–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geisler CD, Yates GK, Patuzzi RB, Johnstone BM (1990) Saturation of outer hair cell receptor currents causes two-tone suppression. Hear Res 44:241–256

    Article  CAS  PubMed  Google Scholar 

  • Goblick TJ, Pfeiffer RR (1969) Time-domain measurements of cochlear nonlinearities using combination click stimuli. J Acoust Soc Am 46:924–938

    Article  PubMed  Google Scholar 

  • Harte JM, Elliott SJ, Kapadia S, Lutman ME (2005) Dynamic nonlinear cochlear model predictions of click-evoked otoacoustic emission suppression. Hear Res 207:99–109

    Article  PubMed  Google Scholar 

  • Kapadia S, Lutman ME (2000a) Nonlinear temporal interactions in click-evoked otoacoustic emissions. II. Experimental data. Hear Res 146:101–120

    Article  CAS  PubMed  Google Scholar 

  • Kapadia S, Lutman ME (2000b) Nonlinear temporal interactions in click-evoked otoacoustic emissions. I. Assumed model and polarity-symmetry. Hear Res 146:89–100

    Article  CAS  PubMed  Google Scholar 

  • Kapadia S, Lutman ME, Palmer AR (2005) Transducer hysteresis contributes to “stimulus artifact” in the measurement of click-evoked otoacoustic emissions. J Acoust Soc Am 118:620–622

    Article  PubMed  Google Scholar 

  • Keefe DH, Feeney MP, Hunter LL, Fitzpatrick DF (2016) Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli. J Acoust Soc Am 140:1949–1973

    Article  PubMed  PubMed Central  Google Scholar 

  • Kemp DT, Chum RA (1980a) Observations on the generator mechanism of stimulus frequency acoustic emissions–two tone suppression. In: deBoer E, Viergever MA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft University Press, Delft, pp 34–41

    Chapter  Google Scholar 

  • Kemp DT, Chum R (1980b) Properties of the generator of stimulated acoustic emissions. Hear Res 2:213–232

    Article  CAS  PubMed  Google Scholar 

  • Kemp DT, Brass D, Souter M (1990) Observations on simultaneous SFOAE and DPOAE generation and suppression. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The mechanics and biophysics of hearing. Springer-Verlag, New York, pp 202–209

    Chapter  Google Scholar 

  • Lineton B, Wildgoose CM (2009) Comparing two proposed measures of cochlear mechanical filter bandwidth based on stimulus frequency otoacoustic emissions. J Acoust Soc Am 125:1558–1566

    Article  PubMed  Google Scholar 

  • Mandal S, Zhak SM, Sarpeshkar R (2009) A bio-inspired active radio-frequency silicon cochlea. IEEE J Solid State Circuits 44:1814–1828

    Article  Google Scholar 

  • Olson ES (2004) Harmonic distortion in intracochlear pressure and its analysis to explore the cochlear amplifier. J Acoust Soc Am 115:1230–1241

    Article  PubMed  Google Scholar 

  • Parham K, Zhao HB, Kim DO (1996) Responses of auditory nerve fibers of the unanesthetized decerebrate cat to click pairs as simulated echoes. J Neurophysiol 76:17–29

    Article  CAS  PubMed  Google Scholar 

  • Parham K, Zhao HB, Ye Y, Kim DO (1998) Responses of anteroventral cochlear nucleus neurons of the unanesthetized decerebrate cat to click pairs as simulated echoes. Hear Res 125:131–146

    Article  CAS  PubMed  Google Scholar 

  • Rabiner LR, Schafer RW (2007) Homomorphic speech analysis. In: introduction to digital speech processing, pp 55-74: now publishers

  • Raufer S, Verhulst S (2016) Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning. Hear Res 342:150–160

    Article  PubMed  Google Scholar 

  • Recio A, Rich NC, Narayan SS, Ruggero MA (1998) Basilar-membrane responses to clicks at the base of the chinchilla cochlea. J Acoust Soc Am 103:1972–1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Recio-Spinoso A, Cooper NP (2013) Masking of sounds by a background noise--cochlear mechanical correlates. J Physiol 591:2705–2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J Acoust Soc Am 49(Suppl 2):1218

    Article  Google Scholar 

  • Rhode WS (2007) Mutual suppression in the 6 kHz region of sensitive chinchilla cochleae. J Acoust Soc Am 121:2805–2818

    Article  PubMed  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robles L, Rhode WS, Geisler CD (1976) Transient response of the basilar membrane measured in squirrel monkeys using the Mössbauer effect. J Acoust Soc Am 59:926–939

    Article  CAS  PubMed  Google Scholar 

  • Ruggero MA, Robles L, Rich NC (1992) Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. J Neurophysiol 68:1087–1099

    Article  CAS  PubMed  Google Scholar 

  • Russell IJ, Nilsen KE (1997) The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane. Proc Natl Acad Sci U S A 94:2660–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachs MB, Kiang NY (1968) Two-tone inhibition in auditory-nerve fibers. J Acoust Soc Am 43:1120–1128

    Article  CAS  PubMed  Google Scholar 

  • Schafer RW (2008) Homomorphic systems and cepstrum analysis of speech. In: Benesty J, Sondhi MM, Huang YA (eds) Springer handbook of speech processing. Springer Berlin Heidelberg, Berlin, pp 161–180

    Chapter  Google Scholar 

  • Sellick PM, Russell IJ (1979) Two-tone suppression in cochlear hair cells. Hear Res 1:227–236

    Article  Google Scholar 

  • Shera CA (2001a) Frequency glides in click responses of the basilar membrane and auditory nerve: their scaling behavior and origin in traveling-wave dispersion. J Acoust Soc Am 109:2023–2034

    Article  CAS  PubMed  Google Scholar 

  • Shera CA (2001b) Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics. J Acoust Soc Am 110:332–348

    Article  CAS  PubMed  Google Scholar 

  • Shera CA (2007) Laser amplification with a twist: traveling-wave propagation and gain functions from throughout the cochlea. J Acoust Soc Am 122:2738–2758

    Article  PubMed  Google Scholar 

  • Shera CA (2015) The spiral staircase: tonotopic microstructure and cochlear tuning. J Neurosci 35:4683–4690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shera CA, Cooper NP (2013) Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves. J Acoust Soc Am 133:2224–2239

    Article  PubMed  PubMed Central  Google Scholar 

  • Shera CA, Zweig G (1993) Noninvasive measurement of the cochlear traveling-wave ratio. J Acoust Soc Am 93:3333–3352

    Article  CAS  PubMed  Google Scholar 

  • Siegel JH, Charaziak K, Cheatham MA (2011) Transient- and tone-evoked otoacoustic emissions in three species. In: Shera C, Olson E (eds) What Fire Is in Mine Ears: Progress in Auditory Biomechanics. Springer, pp 307–314

  • Tavartkiladze GA, Frolenkov GI, Kruglov AV, Artamasov SV (1994) Ipsilateral suppression effects on transient evoked otoacoustic emission. Br J Audiol 28:193–204

    Article  CAS  PubMed  Google Scholar 

  • ten Kate JH, Bloothooft G (1983) Suppression in neural response of the auditory system to click pairs and to cosine noise. In, pp 147–154. Berlin: Springer Berlin Heidelberg

  • van der Heijden M (2005) Cochlear gain control. J Acoust Soc Am 117:1223–1233

    Article  PubMed  Google Scholar 

  • van der Heijden M, Joris PX (2005) The speed of auditory low-side suppression. J Neurophysiol 93:201–209

    Article  PubMed  Google Scholar 

  • Verhulst S, Harte JM, Dau T (2008) Temporal suppression and augmentation of click-evoked otoacoustic emissions. Hear Res 246:23–35

    Article  PubMed  Google Scholar 

  • Verhulst S, Harte JM, Dau T (2011a) Temporal suppression of the click-evoked otoacoustic emission level-curve. J Acoust Soc Am 129:1452–1463

    Article  PubMed  Google Scholar 

  • Verhulst S, Shera CA, Harte JM, Dau T (2011b) Can a static nonlinearity account for the dynamics of otoacoustic emission suppression? In: Shera C, Olson E (eds) What Fire Is in Mine Ears: Progress in Auditory Biomechanics, pp 257–263

    Google Scholar 

  • Verhulst S, Dau T, Shera CA (2012) Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission. J Acoust Soc Am 132:3842–3848

    Article  PubMed  PubMed Central  Google Scholar 

  • Versteegh CP, van der Heijden M (2013) The spatial buildup of compression and suppression in the mammalian cochlea. J Assoc Res Otolaryngol 14:523–545

    Article  PubMed  PubMed Central  Google Scholar 

  • von Békésy G (1960) Experiments in hearing. McGraw-Hill, New York

    Google Scholar 

  • Wallach H, Newman EB, Rosenzweig MR (1949) The precedence effect in sound localization. Am J Psychol 62:315–336

    Article  CAS  PubMed  Google Scholar 

  • Wickesberg RE (1996) Rapid inhibition in the cochlear nuclear complex of the chinchilla. J Acoust Soc Am 100:1691–1702

    Article  CAS  PubMed  Google Scholar 

  • Wolf M, Schuchmann M, Wiegrebe L (2010) Localization dominance and the effect of frequency in the Mongolian gerbil, Meriones unguiculatus. J Comp Physiol A Sens Neural Behav Physiol 196:463–470

    Article  Google Scholar 

  • Zettner EM, Folsom RC (2003) Transient emission suppression tuning curve attributes in relation to psychoacoustic threshold. J Acoust Soc Am 113:2031–2041

    Article  PubMed  Google Scholar 

  • Zweig G (1991) Finding the impedance of the organ of Corti. J Acoust Soc Am 89:1229–1254

    Article  CAS  PubMed  Google Scholar 

  • Zweig G (2015) Linear cochlear mechanics. J Acoust Soc Am 138:1102–1121

    Article  PubMed  Google Scholar 

  • Zwicker E, Wesel J (1990) The effect of addition in suppression of delayed evoked otoacoustic emissions and in masking. Acta Acustica 70:189–196

    Google Scholar 

Download references

Acknowledgments

This study is supported by grants R01 DC003687 (CAS), R01 DC011506 (WD), and K99 DC016906 (KKC) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karolina K. Charaziak.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charaziak, K.K., Dong, W., Altoè, A. et al. Asymmetry and Microstructure of Temporal-Suppression Patterns in Basilar-Membrane Responses to Clicks: Relation to Tonal Suppression and Traveling-Wave Dispersion. JARO 21, 151–170 (2020). https://doi.org/10.1007/s10162-020-00747-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-020-00747-2

Keywords

Navigation