Skip to main content

Advertisement

Log in

Effect of Middle-Ear Pathology on High-Frequency Ear Canal Reflectance Measurements in the Frequency and Time Domains

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

The effects of middle-ear pathology on wideband acoustic immittance and reflectance at frequencies above 6–8 kHz have not been documented, nor has the effect of such pathologies on the time-domain reflectance. We describe an approach that utilizes sound frequencies as high as 20 kHz and quantifies reflectance in both the frequency and time domains. Experiments were performed with fresh normal human temporal bones before and after simulating various middle-ear pathologies, including malleus fixation, stapes fixation, and disarticulation. In addition to experimental data, computational modeling was used to obtain fitted parameter values of middle-ear elements that vary systematically due to the simulated pathologies and thus may have diagnostic implications. Our results demonstrate that the time-domain reflectance, which requires acoustic measurements at high frequencies, varies with middle-ear condition. Furthermore, the extended bandwidth frequency-domain reflectance data was used to estimate parameters in a simple model of the ear canal and middle ear that separates three major conductive pathologies from each other and from the normal state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Allen JB (1986) Measurements of eardrum acoustic impedance. In: Allen JB, Hall JH, Hubbard AE, Neely ST, Tubis A (eds) Peripheral auditory mechanisms. Springer-Verlag, New York, pp 44–51

    Google Scholar 

  • Allen J, Jeng P, Levitt H (2005) Evaluation of human middle ear function via an acoustic power assessment. J Rehabil Res Dev 42:63–78

    PubMed  Google Scholar 

  • Brass D, Locke A (1997) The effect of the evanescent wave upon acoustic measurements in the human ear canal. J Acoust Soc Am 101:2164–2175

    CAS  PubMed  Google Scholar 

  • de La Rochefoucauld O, Kachroo P, Olson ES (2010) Ossicular motion related to middle ear transmission delay in gerbil. Hear Res 270(1):158–172

    Google Scholar 

  • Dong W, Varavva P, Olson ES (2013) Sound transmission along the ossicular chain in common wild-type laboratory mice. Hear Res 301:27–34

    PubMed  Google Scholar 

  • Farmer-Fedor BL, Rabbitt RD (2002) Acoustic intensity, impedance and reflection coefficient in the human ear canal. J Acoust Soc Am 112:600–620

    CAS  PubMed  Google Scholar 

  • Feeney MP, Grant IL, Marryott LP (2003) Wideband energy reflectance in adults with middle-ear disorders. J Speech Lang Hear Res 46:901–911

    PubMed  Google Scholar 

  • Feeney MP, Grant IL, Mills DM (2009) Wideband energy reflectance measurements of ossicular chain discontinuity and repair in human temporal bone. Ear Hear 30:391–400

    PubMed  Google Scholar 

  • Feeney MP, Hunter LL, Kei J, Lilly DJ, Margolis RH, Nakajima HH, Neely ST, Prieve BA, Rosowski JJ, Sanford CA, Schairer KS (2013) Consensus statement: Eriksholm workshop on wideband absorbance measures of the middle ear. Ear Hear 34:78s–79s

    PubMed  Google Scholar 

  • Fowler CG, Shanks JE (2002) Tympanometry. In: Katz J, Burkard RF, Medwetsky L (eds) Handbook of clinical audiology, 5th edn, pp 175–204

    Google Scholar 

  • Gouws N, Swanepoel DW, De Jager LB (2017) Wideband acoustic immittance for assessing middle ear functioning for preterm neonates in the neonatal intensive care unit. S Afr J Commun Disord 64(1):1–11

    Google Scholar 

  • Harford E (1980) Tympanometry. In: Jerger J, Northern J (eds) Clinical impedance audiometry, 2nd edn. American Electromedics Corp, Acton, pp 40–64

    Google Scholar 

  • Huang GT, Rosowski JJ, Puria S, Peake WT (2000) Test of some common assumptions of ear-canal acoustics in cats. J Acoust Soc Am 108:1147–1161

    CAS  PubMed  Google Scholar 

  • Hudde H (1983) Measurement of the eardrum impedance of human ears. J Acoust Soc Am 73:242–247

    CAS  PubMed  Google Scholar 

  • Hunter LL, Bagger-Sjöbäck D, Lundberg M (2008) Wideband reflectance associated with otitis media in infants and children with cleft palate. Int J Audiol 47:S57–S61

    PubMed  Google Scholar 

  • Hunter LL, Feeney MP, Miller JAL, Jeng PS, Bohning S (2010) Wideband reflectance in newborns: normative regions and relationship to hearing screening results. Ear Hear 31(5):599–610

    PubMed  PubMed Central  Google Scholar 

  • Keefe DH, Bulen JC, Arehart KH, Burns EM (1993) Ear-canal impedance and reflection coefficient in human infants and adults. J Acoust Soc Am 94:2617–2638

    CAS  PubMed  Google Scholar 

  • Lewis JD, Neely ST (2015) Non-invasive estimation of middle-ear input impedance and efficiency. J Acoust Soc Am 38:977–993

    Google Scholar 

  • Margolis RH, Osguthorpe JD, Popelka GR (1978) The effects of experimentally-produced middle ear lesions on tympanometry in cats. Acta Otolaryngol 86:428–436

    CAS  PubMed  Google Scholar 

  • Masud SF, Raufer S, Neely ST, Nakajima HH (2018) The effect of middle ear cavity and superior canal dehiscence on wideband acoustic immittance in fresh human cadaveric specimens. AIP Conf Proc 1965(1):050003-1:8

    Google Scholar 

  • Merchant SN, Ravicz ME, Voss SE, Peake WT, Rosowski JJ (1998) Middle-ear mechanics in normal, diseased and reconstructed ears. J Laryngol Otol 112:715–731

    CAS  PubMed  Google Scholar 

  • Merchant GR, Roosli C, Niesten MF, Hamade MA, Lee DJ, McKinnon ML, Ulku CH, Roswoski JJ, Merchant SN, Nakajima HH (2015) Power reflectance as a screening tool for the diagnosis of superior Semicircular Canal dehiscence. Otol Neurotol 36:172–177

    PubMed  PubMed Central  Google Scholar 

  • Merchant GR, Merchant SN, Rosowski JJ, Nakajima HH (2016) Controlled exploration of the effects of conductive hearing loss on wideband acoustic immittance in human cadaveric preparations. Hear Res 341:19–30

    PubMed  PubMed Central  Google Scholar 

  • Nakajima HH, Ravicz ME, Merchant SN, Peake WT, Rosowski J (2005) Experimental ossicular fixations and the middle ear’s response to sound: evidence for a flexible ossicular chain. Hear Res 204:60–77

    PubMed  Google Scholar 

  • Nakajima HH, Pisano DV, Roosli C, Hamade MA, Merchant GR, Mafoud L, Halpin CF, Rosowski JJ, Merchant SN (2012) Comparison of ear canal reflectance and umbo velocity in patients with conductive hearing loss. Ear Hear 33:35–43

    PubMed  PubMed Central  Google Scholar 

  • Nakajima HH, Rosowski JJ, Shahnaz N, Voss SE (2013) Assessment of ear disorders using power reflectance. Ear Hear 34:48s–53s

    PubMed  PubMed Central  Google Scholar 

  • Olson ES (1998) Observing middle and inner ear mechanics with novel intracochlear pressure sensors. J Acoust Soc Am 103:3445–3463

    CAS  PubMed  Google Scholar 

  • Prieve BA, Feeney MP, Stenfelt S, Shahnaz N (2013) Prediction of conductive hearing loss using wideband acoustic immittance. Ear Hear 34:54s–59s

    PubMed  Google Scholar 

  • Puria S (2003) Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am 113:2773–2789

    PubMed  Google Scholar 

  • Rasetshwane DM, Neely ST (2011) Inverse solution of ear-canal area function from reflectance. J Acoust Soc Am 130:3873–3881

    PubMed  PubMed Central  Google Scholar 

  • Ravicz ME, Merchant SN, Rosowski JJ (2000) Effect of freezing and thawing on stapes-cochlear input impedance in human temporal bones. Hear Res 150:215–224

    CAS  PubMed  Google Scholar 

  • Rosowski JJ, Davis PJ, Merchant SN, Donahue KM, Coltrera MD (1990) Cadaver middle ears as models for living ears: comparisons of middle ear input impedance. Ann Otol Rhinol Laryngol 99:403–412

    CAS  PubMed  Google Scholar 

  • Rosowski JJ, Chien W, Ravicz ME, Merchant SN (2007) Testing a method for quantifying the output of implantable middle ear hearing devices. Audiol Neurotol 12:265–276

    CAS  Google Scholar 

  • Rosowski JJ, Nakajima HH, Merchant SN (2008) Clinical utility of laser-doppler vibrometer measurements in live normal and pathologic human ears. Ear Hear 29:3–19

    PubMed  PubMed Central  Google Scholar 

  • Rosowski JJ, Nakajima HH, Hamade MA, Mafoud L, Merchant GR, Halpin CF, Merchant SN (2012) Ear canal reflectance, umbo velocity and tympanometry in normal hearing adults. Ear Hear 33:19–34

    PubMed  PubMed Central  Google Scholar 

  • Scheperle RA, Neely ST, Kopun JG, Gorga MP (2008) Influence of in situ, sound-level calibration on distortion-product otoacoustic emission variability. J Acoust Soc Am 124:288–300

    PubMed  PubMed Central  Google Scholar 

  • Scheperle RA, Goodman SS, Neely ST (2011) Further assessment of forward pressure level for in situ calibration. J Acoust Soc Am 130:882–3892

    Google Scholar 

  • Shahnaz N, Bork K, Polka L, Longridge N, Bell D, Westerberg BD (2009a) Energy reflectance and tympanometry in normal and otosclerotic ears. Ear Hear 30:219–233

    PubMed  Google Scholar 

  • Shahnaz N, Longridge N, Bell D (2009b) Wideband energy reflectance patterns in preoperative and post-operative otosclerotic ears. Int J Audiol 48(5):240–247

    PubMed  Google Scholar 

  • Siegel JH (1995) Cross-talk in otoacoustic emission probes. Ear Hear 16:150–158

    CAS  PubMed  Google Scholar 

  • Stepp CE, Voss SE (2005) Acoustics of the human middle-ear air space. J Acoust Soc Am 118:861–871

    PubMed  Google Scholar 

  • Stinson MR (1990) Revision of estimates of acoustic energy reflectance at the human eardrum. J Acoust Soc Am 88:1773–1778

    CAS  PubMed  Google Scholar 

  • Stinson MR, Lawton BW (1989) Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution. J Acoust Soc Am 85:2492–2503

    CAS  PubMed  Google Scholar 

  • Tonndorf J, Pastaci H (1986) Middle ear sound transmission: a field of early interest to merle Lawrence. Am J Otolaryngol 7:120–129

    CAS  PubMed  Google Scholar 

  • Voss SE, Allen J (1994) Measurement of acoustic impedance and reflectance in the human ear canal. J Acoust Soc Am 95:372–384

    CAS  PubMed  Google Scholar 

  • Voss SE, Horton NJ, Woodbury RR, Sheffield KN (2008) Sources of variability in reflectance measurements on normal cadaver ears. Ear Hear 29:651–665

    PubMed  Google Scholar 

  • Voss SE, Merchant GR, Horton NJ (2012) Effects of middle-ear disorders on power reflectance measured in cadaveric ear canals. Ear Hear 33:195–208

    PubMed  PubMed Central  Google Scholar 

  • Zwislocki J (1962) Analysis of the middle-ear function. 1. Input impedance. J Acoust Soc Am 34:1514–1523

    Google Scholar 

  • Zwislocki J, Feldman AS (1970) Acoustic impedance in pathologic ears, vol 15. American Speech and Hearing Association Monograph, Washington, DC

    Google Scholar 

Download references

Acknowledgments

This work is dedicated to the memory of our friend and colleague Saumil N. Merchant MD. The authors thank Mike E. Ravicz who provided software to aid in the administration and analysis of velocity measurements and Daniel M. Rasetshwane for discussions surrounding data analysis and interpretation of time-domain reflectance. We also thank Diane Jones who enabled our ability to experiment on fresh human temporal bones and Salwa Masud for assistance in ear canal diameter measurements.

Funding

This work was supported by NIH Grants R01 DC004798, R01 DC008318, and a donation from Mr. Lakshmi Mittal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabrielle R. Merchant.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merchant, G.R., Siegel, J.H., Neely, S.T. et al. Effect of Middle-Ear Pathology on High-Frequency Ear Canal Reflectance Measurements in the Frequency and Time Domains. JARO 20, 529–552 (2019). https://doi.org/10.1007/s10162-019-00735-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-019-00735-1

Keywords

Navigation