Skip to main content

Advertisement

Log in

Surface Motion of Tympanic Membrane in a Chinchilla Model of Acute Otitis Media

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

The conductive hearing loss caused by acute otitis media (AOM) is commonly related to a reduction of the tympanic membrane (TM) mobility in response to sound stimuli. However, spatial alterations of the TM surface motion associated with AOM have rarely been addressed. In this study, the TM surface motion was determined using scanning laser Doppler vibrometry (SLDV) in a chinchilla model of AOM. The AOM was established by transbullar injection of nontypeable Haemophilus influenzae. The TM surface vibration was measured in control (uninfected) animals and two AOM groups of animals: 4 days (4D) and 8 days (8D) post inoculation. To quantify the effect of middle ear pressure in those infected ears, the SLDV measurement was first conducted in unopened AOM ears and then in middle ear pressure released ears. Results showed that middle ear infection generally reduced the TM displacement across the entire surface, but the reduction in the umbo displacement over the time course, from 4 to 8 days post inoculation, was less than the reduction in the displacement at the center of each quadrant. The presence of middle ear fluid shifted the occurrence of traveling-wave-like motion on the TM surface to lower frequencies. The observation of the spatial variations of TM surface motion from this study will help refine our understanding of the middle ear sound transmission characteristics in relation to AOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aarnisalo AA, Cheng JT, Ravicz ME, Hulli N, Harrington EJ, Hernandez-Montes MS, Furlong C, Merchant SN, Rosowski JJ (2009) Middle ear mechanics of cartilage tympanoplasty evaluated by laser holography and vibrometry. Otol Neurotol 30(8):1209–1214

    Article  PubMed  PubMed Central  Google Scholar 

  • Burkhardt A, Kirsten L, Bornitz M, Zahnert T, Koch E (2014) Investigation of the human tympanic membrane oscillation ex vivo by Doppler optical coherence tomography. J Biophotinics 7(6):434–441

    Article  CAS  Google Scholar 

  • Cheng JT, Aarnisalo AA, Harrington E, Hernadez-Montes MS, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear Res 263(1–2):66–77

    Article  PubMed  Google Scholar 

  • Cheng JT, Hamade M, Harring E, Furlong C, Merchant SN, Rosowski JJ (2013) Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis. J Acoust Soc Am 133(2):918–937

    Article  PubMed  PubMed Central  Google Scholar 

  • Dai C, Gan RZ (2008) Change of middle ear transfer function in otitis media with effusion model of guinea pig. Hear Res 243(1–2):78–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Gan RZ, Dai C, Wood MW (2006) Laser interferometry measurements of middle ear fluid and pressure effects on sound transmission. J Acoust Soc Am 120(6):3799–3810

    Article  PubMed  Google Scholar 

  • Guan X (2014) Middle ear biomechanics in chinchilla model of acute otitis media. Ph. D dissertation, University of Oklahoma

  • Guan X, Gan RZ (2011) Effect of middle ear fluid on sound transmission and auditory brainstem response in guinea pigs. Hear Res 277(1–2):96–106

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan X, Gan RZ (2013) Mechanisms of tympanic membrane and incus mobility loss in acute otitis media model of guinea pig. J Assoc Res Otolaryngol 14(3):295–307

    Article  PubMed  PubMed Central  Google Scholar 

  • Guan X, Chen Y, Gan RZ (2014) Factors affecting loss of tympanic membrane mobility in acute otitis media model of chinchilla. Hear Res 309:136–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Guinan JJ Jr, Peake WT (1967) Middle-ear characteristics of anesthetized cats. J Acoust Soc Am 41(5):1237–1261

    Article  PubMed  Google Scholar 

  • Huber AM, Schwab C, Linder T, Stoeckli SJ, Ferrazzini M, Dillier N, Fisch U (2001) Evaluation of eardrum laser Doppler interferometry as a diagnostic tool. Laryngoscope 111(3):501–507

    Article  CAS  PubMed  Google Scholar 

  • Jakob A, Bornitz M, Kuhlisch E, Zahnert T (2009) New aspects in the clinical diagnosis of otosclerosis using laser Doppler vibrometry. Otol Neurotol 30(8):1049–1057

    Article  PubMed  Google Scholar 

  • Keefe DH, Simmons JL (2003) Energy transmittance predicts conductive hearing loss in older children and adults. J Acoust Soc Am 114(6):3217–3238

    Article  PubMed  Google Scholar 

  • Khanna SM, Tonndorf J (1972) Tympanic membrane vibrations in cats studied by time-averaged holography. J Acoust Soc Am 51(6):1904–1920

    Article  CAS  PubMed  Google Scholar 

  • Lee CY, Rosowski JJ (2001) Effects of middle ear static pressure on par tensa and pars flaccida of gerbil ears. Hear Res 153(1–2):146–163

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Sanford CA, Ellison JC, Fitzpatrick DF, Gorga MP, Keefe DH (2008) Wideband absorbance tympanometry using pressure sweeps: system development and results on adults with normal hearing. J Acoust Soc Am 124(6):3708–3719

    Article  PubMed  PubMed Central  Google Scholar 

  • Minovi A, Dazert S (2014) Diseases of the middle ear in childhood. GMS Curr Top Otorhinolaryngol Head Neck Surg 13(11):1–29

    Google Scholar 

  • Morton DJ, Hempel RJ, Seale TW, Whitby PW, Stull TL (2012) A functional tonB gene is required for both virulence and competitive fitness in a chinchilla model of Haemophilus influenzae otitis media. BMC Res Notes 5:327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima HH, Pisano DV, Roosli C, Hamade MA, Merchant GR, Mahfoud L, Halpin CF, Rosowski JJ, Merchant SN (2012) Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study. Ear Hear 33(1):35–43

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravicz ME, Rosowski JJ (2013) Middle-ear velocity transfer function, cochlear input impedance and middle-ear efficiency in chinchilla. J Acoust Soc Am 134(4):2852–2865

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravicz ME, Rosowski JJ, Merchant SN (2004) Mechanisms of hearing loss resulting from middle-ear fluid. Hear Res 195(1–2):103–130

    Article  PubMed  Google Scholar 

  • Rosowski JJ, Cheng JT, Ravicz ME, Hulli M, Hernandez-Montes MS, Harrington EJ, Furlong C (2009) Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4–25 kHz. Hear Res 253(1–2):83–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosowski JJ, Cheng JT, Merchant SN, Harrington E, Furlong C (2011) New data on the motion of the normal and reconstructed tympanic membrane. Otol Neurotol 32(9):1559–1567

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosowski JJ, Dobrev I, Khaleghi M, LU W, Cheng JT, Harrington E, Furlong C (2013) Measurements of three-dimensional shape and sound-induced motion of the chinchilla tympanic membrane. Hear Res 301:44–52

    Article  PubMed  Google Scholar 

  • Rovers MM, Schilder AG, Zielhuis GA, Rosenfeld RM (2004) Otitis media. Lancet 363:465–473

    Article  PubMed  Google Scholar 

  • Ruggero MA, Rich NC, Robles L, Shivapuja BG (1990) Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea. J Acoust Soc Am 87(4):1612–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stasche N, Foth HJ, Hörmann K, Baker A, Huthoff C (1994) Middle ear transmission disorders-tympanic membrane vibration analysis by laser-Doppler vibrometey. Acta Otolaryngol 114(1):59–63

    Article  CAS  PubMed  Google Scholar 

  • Thornton JL, Chevallier KM, Koka K, Gabbard SA, Tollin D (2013) Conductive hearing loss induced by experimental middle-ear effusion in a chinchilla model reveals impaired tympanic membrane-coupled ossicular chain movement. J Assoc Res Otolaryngol 14:451–464

    Article  PubMed  PubMed Central  Google Scholar 

  • Tonndorf J, Khanna SM (1972) Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. J Acoust Soc Am 52(4):1221–1233

    Article  CAS  PubMed  Google Scholar 

  • Ulku CH, Cheng JT, Guignard J, Rosowski JJ (2014) Comparisons of the mechanics of partial and total ossicular replacement prostheses with cartilage in a cadaveric temporal bone preparation. Acta Otolaryngol 134(8):776–784

    Article  PubMed  PubMed Central  Google Scholar 

  • Vrettakos PA, Dear SP, Saunders JC (1988) Middle ear structure in the chinchilla: a quantitative study. Am J Otolaryngol 9(2):58–67

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Ando M, Takeuchi M, Sugawara H, Koike T, Kobayashi T, Hozawa K, Gemma T, Nara M (2002) Vibration measurement of the tympanic membrane of guinea pig temporal bones using time-averaged speckle pattern interferometry. J Acoust Soc Am 111(5):2189–2199

    Article  PubMed  Google Scholar 

  • Wang X, Gan RZ (2016) 3D finite element model of the chinchilla ear for characterizing middle ear functions. Biomech Model Mechanobiol 15(5):1263–1277

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Nakmali D, Gan RZ (2015) Complex modulus of round window membrane over auditory frequencies in normal and otitis media chinchilla ears. Int J Exp Comput Biomech 3(1):27–44

    Article  Google Scholar 

  • Wang X, Guan X, Pineda M, Gan RZ (2016) Motion of tympanic membrane in guinea pig otitis media model measured by scanning laser Doppler vibrometry. Hear Res 339:184–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Wever EG, Lawrence M (1954) Physiological acoustics. Princeton University Press, Princeton

    Book  Google Scholar 

  • Yokell Z, Wang X, Gan RZ (2015) Dynamic properties of tympanic membrane in a chinchilla otitis media model measured with acoustic loading. ASME. J Biomech Eng 137:0810061–0810069

    Article  PubMed Central  Google Scholar 

  • Zhang X, Guan X, Nakmali D, Palan V, Pineda M, Gan RZ (2014) Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid. J Assoc Res Otolaryngol 15(6):867–881

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Xiangming Zhang and Dr. Xiying Guan, former graduate students in the Biomedical Engineering Lab at the University of Oklahoma, and Mario Pineda, at Polytec Inc., for participating in SLDV measurement. This work was supported by NIH R01DC011585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Z. Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Gan, R.Z. Surface Motion of Tympanic Membrane in a Chinchilla Model of Acute Otitis Media. JARO 19, 619–635 (2018). https://doi.org/10.1007/s10162-018-00683-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-018-00683-2

Keywords

Navigation