Skip to main content

Advertisement

Log in

Predictions of the Contribution of HCN Half-Maximal Activation Potential Heterogeneity to Variability in Intrinsic Adaptation of Spiral Ganglion Neurons

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Spiral ganglion neurons (SGNs) exhibit a wide range in their strength of intrinsic adaptation on a timescale of 10s to 100s of milliseconds in response to electrical stimulation from a cochlear implant (CI). The purpose of this study was to determine how much of that variability could be caused by the heterogeneity in half-maximal activation potentials of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, which are known to produce intrinsic adaptation. In this study, a computational membrane model of cat type I SGN was developed based on the Hodgkin-Huxley model plus HCN and low-threshold potassium (KLT) conductances in which the half-maximal activation potential of the HCN channel was varied and the response of the SGN to pulse train and paired-pulse stimulation was simulated. Physiologically plausible variation of HCN half-maximal activation potentials could indeed determine the range of adaptation on the timescale of 10s to 100s of milliseconds and recovery from adaptation seen in the physiological data while maintaining refractoriness within physiological bounds. This computational model demonstrates that HCN channels may play an important role in regulating the degree of adaptation in response to pulse train stimulation and therefore contribute to variable constraints on acoustic information coding by CIs. This finding has broad implications for CI stimulation paradigms in that cell-to-cell variation of HCN channel properties are likely to significantly alter SGN excitability and therefore auditory perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  • Arora K, Dawson P, Dowell R, Vandali A (2009) Electrical stimulation rate effects on speech perception in cochlear implants. Int J Audiol 48(8):561–567

    Article  PubMed  Google Scholar 

  • Baylor DA, Nicholls JG (1969) Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J Physiol 203(3):555–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benarroch EE (2013) HCN channels: function and clinical implications. Neurology 80(3):304–310

    Article  PubMed  Google Scholar 

  • Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89(3):847–885

    Article  CAS  PubMed  Google Scholar 

  • Botros A, Psarros C (2010) Neural response telemetry reconsidered: II. The influence of neural population on the ECAP recovery function and refractoriness. Ear Hear 31(3):380–391

    Article  PubMed  Google Scholar 

  • Boulet J, White MW, Bruce IC (2016) Temporal considerations for stimulating spiral ganglion neurons with cochlear implants. J Assoc Res Otolaryngol 17(1):1–17

    Article  PubMed  Google Scholar 

  • Bruce IC (2006) Implementation issues in approximate methods for stochastic Hodgkin-Huxley models. Ann Biomed Eng 35(2):315–318

    Article  PubMed  Google Scholar 

  • Bruce IC, White MW, Irlicht LS, O’Leary SJ, Clark GM (1999a) The effects of stochastic neural activity in a model predicting intensity perception with cochlear implants: low-rate stimulation. IEEE T Bio-Med Eng 46(12):1393–1404

    Article  CAS  Google Scholar 

  • Bruce IC, White MW, Irlicht LS, O’Leary SJ, Dynes S, Javel E, Clark GM (1999b) A stochastic model of the electrically stimulated auditory nerve: single-pulse response. IEEE T Bio-Med Eng 46(6):617–629

    Article  CAS  Google Scholar 

  • Cao XJ, Oertel D (2011) The magnitudes of hyperpolarization-activated and low-voltage-activated potassium currents co-vary in neurons of the ventral cochlear nucleus. J Neurophysiol 106(2):630–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartee LA (2000) Evaluation of a model of the cochlear neural membrane. II: comparison of model and physiological measures of membrane properties measured in response to intrameatal electrical stimulation. Hear Res 146(1–2):153–166

    Article  CAS  PubMed  Google Scholar 

  • Cartee LA, van den Honert C, Finley CC, Miller RL (2000) Evaluation of a model of the cochlear neural membrane. I. Physiological measurement of membrane characteristics in response to intrameatal electrical stimulation. Hear Res 146(1–2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Cartee LA, Miller CA, van den Honert C (2006) Spiral ganglion cell site of excitation I: comparison of scala tympani and intrameatal electrode responses. Hear Res 215(1–2):10–21

    Article  PubMed  Google Scholar 

  • Chen C (1997) Hyperpolarization-activated current (Ih) in primary auditory neurons. Hear Res 110(1–2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Cohen LT (2009) Practical model description of peripheral neural excitation in cochlear implant recipients: 5. Refractory recovery and facilitation. Hear Res 248(1–2):1–14

    Article  PubMed  Google Scholar 

  • Davis RL, Crozier RA (2015) Dynamic firing properties of type I spiral ganglion neurons. Cell Tissue Res 361(1):115–127

    Article  CAS  PubMed  Google Scholar 

  • Dynes SBC (1996) Discharge characteristics of auditory nerve fibers for pulsatile electrical stimuli. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81(25):2340–2361

    Article  CAS  Google Scholar 

  • Guevara MR (2003) Bifurcations involving fixed points and limit cycles in biological systems. In: Beuter A, Glass L, Mackey MC, Titcombe MS (eds) Nonlinear dynamics in physiology and medicine. Springer New York, New York, NY, pp. 41–85

    Chapter  Google Scholar 

  • Heffer LF, Sly DJ, Fallon JB, White MW, Shepherd RK, O’Leary SJ (2010) Examining the auditory nerve fiber response to high rate cochlear implant stimulation: chronic sensorineural hearing loss and facilitation. J Neurophysiol 104(6):3124–3135

    Article  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howells J, Trevillion L, Bostock H, Burke D (2012) The voltage dependence of Ih in human myelinated axons. J Physiol Lond 590(Pt 7):1625–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68(4):1373–1383

    Google Scholar 

  • Imennov NS, Rubinstein JT (2009) Stochastic population model for electrical stimulation of the auditory nerve. IEEE T Bio-Med Eng 56(10):2493–2501

    Article  Google Scholar 

  • Jenks GF (1967) The data model concept in statistical mapping. In: Frenzel K (ed) International yearbook of cartography, George Philip & Son, pp 186–190

  • Kim YH, Holt JR (2013) Functional contributions of HCN channels in the primary auditory neurons of the mouse inner ear. J Gen Physiol 142(3):207–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krouchev NI, Rattay F, Sawan M, Vinet A (2015) From squid to mammals with the HH model through the Nav channels’ half-activation-voltage parameter. PLoS One 10(12):e0143,570–e0143,531

    Article  Google Scholar 

  • Lai HC, Jan LY (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neu-rosci 7(7):548–562

    Article  CAS  Google Scholar 

  • Litvak LM, Smith ZM, Delgutte B, Eddington DK (2003) Desynchronization of electrically evoked auditory-nerve activity by high-frequency pulse trains of long duration. J Acoust Soc Am 114(4 Pt 1):2066–2078

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Lee E, Davis RL (2014a) Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels. Neuroscience 257:96–110

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Manis PB, Davis RL (2014b) Ih and HCN channels in murine spiral ganglion neurons: tonotopic variation, local heterogeneity, and kinetic model. J Assoc Res Otolaryngol 15(4):585–599

    Article  PubMed  PubMed Central  Google Scholar 

  • Long JS (1997) Regression models for categorical and limited dependent variables. Advanced quantitative techniques in the social sciences. SAGE Publications Inc, Thousand Oaks, CA

    Google Scholar 

  • Miller C, Abbas PJ, Nourski KV, Hu N, Robinson BK (2003) Electrode configuration influences action potential initiation site and ensemble stochastic response properties. Hear Res 175(1–2):200–214

    Article  PubMed  Google Scholar 

  • Miller CA, Abbas PJ, Robinson B (2001) Response properties of the refractory auditory nerve fiber. J Assoc Res Otolaryngol 2(3):216–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CA, Hu N, Zhang F, Robinson BK, Abbas PJ (2008) Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains. J Assoc Res Otolaryngol 9(1):122–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller CA, Woo J, Abbas PJ, Hu N, Robinson BK (2011) Neural masking by sub-threshold electric stimuli: animal and computer model results. J Assoc Res Otolaryngol 12(2):219–232

    Article  PubMed  Google Scholar 

  • Mino H, Rubinstein JT, White JA (2002) Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Ann Biomed Eng 30(4):578–587

    Article  PubMed  Google Scholar 

  • Mino H, Rubinstein JT, Miller CA, Abbas PJ (2004) Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation. IEEE Trans Biomed Eng 51(1):13–20

    Article  PubMed  Google Scholar 

  • Mo ZL, Davis RL (1997) Heterogeneous voltage dependence of inward rectifier currents in spiral ganglion neurons. J Neurophysiol 78(6):3019–3027

    CAS  PubMed  Google Scholar 

  • Morse RP, Allingham D, Stocks NG (2015) Stimulus-dependent refractoriness in the Frankenhaeuser-Huxley model. J Theo Biol 382(C):397–404

    Article  CAS  Google Scholar 

  • Negm MH, Bruce IC (2008) Effects of Ih and IKLT on the response of the auditory nerve to electrical stimulation in a stochastic Hodgkin-Huxley model. Proc 30th Annu Int Conf IEEE Eng Med Biol Soc 2008:5539–5542

  • Negm MH, Bruce IC (2014) The effects of HCN and KLT ion channels on adaptation and refractoriness in a stochastic auditory nerve model. IEEE T Bio-Med Eng 61(11):2749–2759

    Article  Google Scholar 

  • O’Brien GE, Rubinstein JT (2016) The development of biophysical models of the electrically stimulated auditory nerve: Single-node and cable models. Network pp 1–22

  • Rasband MN, Shrager P (2000) Ion channel sequestration in central nervous system axons. J Physiol 525(Pt1):63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rattay F, Danner SM (2014) Peak I of the human auditory brainstem response results from the somatic regions of type I spiral ganglion cells: evidence from computer modeling. Hear Res 315:67–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480

    Article  CAS  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003a) Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons. J Neurophysiol 89(6):3083–3096

    Article  CAS  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003b) The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. J Neurophysiol 89(6):3097–3113

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein JT (1995) Threshold fluctuations in an N sodium channel model of the node of Ranvier. Biophys J 68(3):779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusznák Z, Szűcs G (2008) Spiral ganglion neurones: an overview of morphology, firing behaviour, ionic channels and function. Pflugers Arch - Eur J Physiol 457(6):1303–1325

    Article  Google Scholar 

  • Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision of spike timing. Neural Comput 10(7):1679–1703

    Article  CAS  PubMed  Google Scholar 

  • Verveen AA (1962) Axon diameter and fluctuation in excitability. Acta Morphol Neerl Scand 5:79–85

    CAS  PubMed  Google Scholar 

  • Verveen AA, Derksen HE (1968) Fluctuation phenomena in nerve membrane. Proc IEEE 56(6):906–916

    Article  Google Scholar 

  • Woo J, Miller CA, Abbas PJ (2009a) Biophysical model of an auditory nerve fiber with a novel adaptation component. IEEE T Bio-Med Eng 56(9):2177–2180

    Article  Google Scholar 

  • Woo J, Miller CA, Abbas PJ (2009b) Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses. IEEE T Bio-Med Eng 56(5):1348–1359

    Article  Google Scholar 

  • Woo J, Miller CA, Abbas PJ (2010) The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study. J Assoc Res Otolaryngol 11(2):283–296

    Article  PubMed  Google Scholar 

  • Yi E, Roux I, Glowatzki E (2010) Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea. J Neurophysiol 103(5):2532–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Miller CA, Robinson BK, Abbas PJ, Hu N (2007) Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains. J Assoc Res Otolaryngol 8(3):356–849

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Paul Manis for supplying his HCN(q,s) channel model code and Dr. Paul Abbas for permitting use of previously published figures. The feedback of the anonymous reviewers on earlier versions of the manuscript was also extremely helpful. This work was supported by NSERC Discovery Grant 261736 (ICB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Boulet.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest in any form.

Appendix

Appendix

For the equations that model the current and channel kinetics of the Nav, Kv, and KLT channels, please refer to the Appendix in Negm and Bruce (2014). Here are the equations describing the voltage-gated activity of the HCN(r) and HCN(q,s) channel models are supplied, shifted by cV 1/2 standard deviations as functions of the relative membrane potential (σ x , where x is the channel particle; refer to Table 1 for individual values).

HCN(r) channel model:

The ionic current follows

$$ {I}_{\mathrm{h},r}(t)={\gamma}_{\mathrm{h}}{N}_{r1}(t)\left[{V}_{\mathrm{m}}(t)-{E}_{\mathrm{h},r}\right] $$
(6)

where γ h is the single-channel conductance, E h,r is the reversal potential, V m(t) is the membrane potential at time t, and \( {N}_{r_1} \)(t) is the number of channels in the fully open, conducting state governed by the kinetic Markov chain state transition diagram

$$ {r}_0\underset{\beta_r}{\overset{\alpha_r}{\rightleftharpoons }}{r}_1 $$
(7)

where transition rates α r and β r , calculated by (19) and (20), are dependent on the relative membrane potential (V) and are functions of the activation function (r ) and time constant (τ r ) below

$$ {r}_{\infty }(V)=\frac{1}{1+5.879 \exp \left[\left(V-c{\sigma}_r\right)/7\right]} $$
(8)
$$ {\tau}_r(V)=4.17+\frac{758.8 \exp \left[\left(V-c{\sigma}_r\right)/14\right]}{1+9.199 \exp \left[13\left(V-c{\sigma}_r\right)/84\right]} $$
(9)

where c extends from −4 to 4.

HCN(q,s) channel model:

The ionic current follows

$$ {I}_{\mathrm{h},\left(q,s\right)}(t)={\upgamma}_{\mathrm{h}}\left[{N}_{q_2}(t)+{N}_{s_1}(t)\right]\left[{V}_{\mathrm{m}}(t)-{E}_{\mathrm{h},\left(q,s\right)}\right] $$
(10)

where \( {N}_{q_2} \)(t) and \( {N}_{s_1} \)(t) are the number of channels in the fully open, conducting states governed by the parallel kinetic Markov chain state transition diagram

$$ \begin{array}{l}{q}_0\underset{\beta_q}{\overset{2{\alpha}_q}{\rightleftharpoons }}{q}_1\underset{2{\beta}_q}{\overset{\alpha_q}{\rightleftharpoons }}{q}_2\hfill \\ {}{s}_0\underset{\beta_s}{\overset{\alpha_s}{\rightleftharpoons }}{s}_1\hfill \end{array} $$
(11)

where transition rates α q , β q , α s , and β s, calculated by (19) and (20), are dependent on the relative membrane potential and are functions of the activation functions (q , s ) and time constants (τ q , τ s ) below

$$ {q}_{\infty }(V)=\frac{1}{{\left(1+9.104 \exp \left[\left(V-c{\sigma}_q\right)/12.36\right]\right)}^{1/2}} $$
(12)
$$ {s}_{A,\infty }(V)=\frac{0.6628}{1+17.09 \exp \left[\left(V-c{\sigma}_s\right)/4.883\right]} $$
(13)
$$ {s}_{B,\infty }(V)=\frac{1-0.6628}{1+3648 \exp \left[\left(V-c{\sigma}_s\right)/3.927\right]} $$
(14)
$$ {s}_{\infty }(V)=\frac{s_{A,\infty }(V)-{s}_{B,\infty }(V)}{0.5551729} $$
(15)
$$ {\tau}_q(V)=\frac{60.98 \exp \left[\left(V-c{\sigma}_q\right)/21.48\right]}{1+2.107 \exp \left[\left(V-c{\sigma}_q\right)/12.19\right]} $$
(16)
$$ {\tau}_s(V)=\frac{632.3 \exp \left[\left(V-c{\sigma}_s\right)/20.23\right]}{1+7.925 \exp \left[\left(V-c{\sigma}_s\right)/13.44\right]}. $$
(17)

Neuron-specific channel modifications

The original channel time constants for KLT: τ w and τ z (Rothman and Manis 2003a) and HCN: τ r (Rothman and Manis 2003b); τ q and τ s (Liu et al. 2014b) were divided by their respective thermal scaling coefficients k w , k z , k r , k q , and k s to adjust the temperature to 37 °C where

$$ {k}_x={Q}_{10,x}^{\left(T-{T}_0\right)/10} $$
(18)

and x is the channel particle and Q 10,x (see Table 1 for channel-specific values) represents the rate gain for two temperature-dependent biological processes separated by 10 °C (Cartee 2000). T 0 represents the original temperature whereas T is the current temperature. The transition rates were then computed as

$$ {\alpha}_x(V)={x}_{\infty }(V)/{\tau}_x(V) $$
(19)
$$ {\beta}_x(V)=\left[1-{x}_{\infty }(V)\right]/{\tau}_x(V) $$
(20)

with the steady-state activation functions (x ) and time constants (τ x ).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulet, J., Bruce, I.C. Predictions of the Contribution of HCN Half-Maximal Activation Potential Heterogeneity to Variability in Intrinsic Adaptation of Spiral Ganglion Neurons. JARO 18, 301–322 (2017). https://doi.org/10.1007/s10162-016-0605-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0605-5

Keywords

Navigation