Skip to main content
Log in

Modeling Binaural Responses in the Auditory Brainstem to Electric Stimulation of the Auditory Nerve

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Bilateral cochlear implants (CIs) provide improvements in sound localization and speech perception in noise over unilateral CIs. However, the benefits arise mainly from the perception of interaural level differences, while bilateral CI listeners’ sensitivity to interaural time difference (ITD) is poorer than normal. To help understand this limitation, a set of ITD-sensitive neural models was developed to study binaural responses to electric stimulation. Our working hypothesis was that central auditory processing is normal with bilateral CIs so that the abnormality in the response to electric stimulation at the level of the auditory nerve fibers (ANFs) is the source of the limited ITD sensitivity. A descriptive model of ANF response to both acoustic and electric stimulation was implemented and used to drive a simplified biophysical model of neurons in the medial superior olive (MSO). The model’s ITD sensitivity was found to depend strongly on the specific configurations of membrane and synaptic parameters for different stimulation rates. Specifically, stronger excitatory synaptic inputs and faster membrane responses were required for the model neurons to be ITD-sensitive at high stimulation rates, whereas weaker excitatory synaptic input and slower membrane responses were necessary at low stimulation rates, for both electric and acoustic stimulation. This finding raises the possibility of frequency-dependent differences in neural mechanisms of binaural processing; limitations in ITD sensitivity with bilateral CIs may be due to a mismatch between stimulation rate and cell parameters in ITD-sensitive neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
Fig. 11

Similar content being viewed by others

References

  • Agmon-Snir H, Carr CE, Rinzel J (1998) The role of dendrites in auditory coincidence detection. Nature 393:268–272

    Article  CAS  PubMed  Google Scholar 

  • American Academy of Otolaryngology-Head and Neck Surgery (2014) Position statement on cochlear implants

  • Barnes-Davies M, Barker MC, Osmani F, Forsythe ID (2004) Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive. Eur J Neurosci 19:325–333

    Article  PubMed  Google Scholar 

  • Batra R, Kuwada S, Fitzpatrick DC (1997) Sensitivity to interaural temporal disparities of low- and high-frequency neurons in the superior olivary complex. I. Heterogeneity of responses. J Neurophysiol 78:1222–1236

    CAS  PubMed  Google Scholar 

  • Baumann VJ, Lehnert S, Leibold C, Koch U (2013) Tonotopic organization of the hyperpolarization-activated current (IH) in the mammalian medial superior olive. Front Neural Circuits 7:117

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernstein LR, Trahiotis C (2002) Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli”. J Acoust Soc Am 112:1026–1036

    Article  PubMed  Google Scholar 

  • Brand A, Behrend O, Marquardt T, Mcalpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547

    Article  CAS  PubMed  Google Scholar 

  • Brew HM, Forsythe ID (2005) Systematic variation of potassium current amplitudes across the tonotopic axis of the rat medial nucleus of the trapezoid body. Hear Res 206:116–132

    Article  CAS  PubMed  Google Scholar 

  • Bruce IC, Irlicht LS, White MW, O'Leary SJ, Dynes S, Javel E, Clark GM (1999a) A stochastic model of the electrically stimulated auditory nerve: pulse-train response. IEEE Trans Biomed Eng 46:630–637

    Article  CAS  PubMed  Google Scholar 

  • Bruce IC, White MW, Irlicht LS, O’Leary SJ, Dynes S, Javel E, Clark GM (1999b) A stochastic model of the electrically stimulated auditory nerve: single-pulse response. IEEE Trans Biomed Eng 46:617–629

    Article  CAS  PubMed  Google Scholar 

  • Brughera AR, Stutman ER, Carney LH, Colburn HS (1996) A model with excitation and inhibition for cells in the medial superior olive. Audit Neurosci 2:219–233

    Google Scholar 

  • Brughera A, Dunai L, Hartmann WM (2013) Human interaural time difference thresholds for sine tones: the high-frequency limit. J Acoust Soc Am 133:2839–2855

    Article  PubMed Central  PubMed  Google Scholar 

  • Butler BE, Lomber SG (2013) Functional and structural changes throughout the auditory system following congenital and earlyonset deafness: implications for hearing restoration. Front Syst Neurosci 7:92

    Article  PubMed Central  PubMed  Google Scholar 

  • Cant NB, Casseday JH (1986) Projections from the anteroventral cochlear nucleus to the lateral and medial superior olivary nuclei. J Comp Neurol 247:457–476

    Article  CAS  PubMed  Google Scholar 

  • Cant NB, Morest DK (1979) Organization of the neurons in the anterior division of the anteroventral cochlear nucleus of the cat. Light-Microscopic Obs Neurosci 4:1909–1923

    CAS  Google Scholar 

  • Chung Y, Hancock KE, Delgutte B (2014a) Neural coding of interaural time difference in an awake rabbit model of bilateral cochlear implants. Abstr Assoc Res Otolaryngol 36:654

    Google Scholar 

  • Chung Y, Hancock KE, Nam SI, Delgutte B (2014b) Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations. J Neurosci Off J Soc Neurosci 34:218–231

    Article  CAS  Google Scholar 

  • Colburn HS, Esquissaud P (1976) An auditory-nerve model for interaural time discrimination of high-frequency complex stimuli. J Acoust Soc Am Supplement:S23

  • Colburn HS, Chung Y, Zhou Y, Brughera A (2009) Models of brainstem responses to bilateral electrical stimulation. J Assoc Res Otolaryngol 10:91–110

    Article  PubMed Central  PubMed  Google Scholar 

  • Couchman K, Grothe B, Felmy F (2010) Medial superior olivary neurons receive surprisingly few excitatory and inhibitory inputs with balanced strength and short-term dynamics. J Neurosci Off J Soc Neurosci 30:17111–17121

    Article  CAS  Google Scholar 

  • Day ML, Semple MN (2011) Frequency-dependent interaural delays in the medial superior olive: implications for interaural cochlear delays. J Neurophysiol 106:1985–1999

    Article  PubMed  Google Scholar 

  • de Boer E (1969) Encoding of frequency information in the discharge pattern of auditory nerve fibers. Int J Audiol 8:547–556

    Article  Google Scholar 

  • Dynes SB, Delgutte B (1992) Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea. Hear Res 58:79–90

    Article  CAS  PubMed  Google Scholar 

  • Eatock RA (2003) Auditory physiology: listening with K+ channels. Curr Biol 13:R767–R769

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636

    CAS  PubMed  Google Scholar 

  • Grothe B, Pecka M, Mcalpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

    Article  CAS  PubMed  Google Scholar 

  • Guinan JJ Jr, Norris BE, Guinan SS (1972) Single auditory units in the superior olivary complex. II: locations of unit categories and tonotopic organization. Int J Neurosci 4:147–166

    Article  Google Scholar 

  • Hamlet WR, Liu YW, Tang ZQ, Lu Y (2014) Interplay between low threshold voltage-gated K(+) channels and synaptic inhibition in neurons of the chicken nucleus laminaris along its frequency axis. Front Neural Circuits 8:51

    Article  PubMed Central  PubMed  Google Scholar 

  • Hancock KE, Noel V, Ryugo DK, Delgutte B (2010) Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness. J Neurosci 30:14068–14079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hancock KE, Chung Y, Delgutte B (2012) Neural ITD coding with bilateral cochlear implants: effect of binaurally coherent jitter. J Neurophysiol 108:714–728

    Article  PubMed Central  PubMed  Google Scholar 

  • Hancock KE, Chung Y, Delgutte B (2013) Congenital and prolonged adult-onset deafness cause distinct degradations in neural ITD coding with bilateral cochlear implants. J Assoc Res Otolaryngol: JARO 14:393–411

    Article  PubMed Central  PubMed  Google Scholar 

  • Henkel CK, Brunso-Bechtold JK (1990) Dendritic morphology and development in the ferret medial superior olivary nucleus. J Comp Neurol 294:377–388

    Article  CAS  PubMed  Google Scholar 

  • Javel E, Shepherd RK (2000) Electrical stimulation of the auditory nerve. III. Response initiation sites and temporal fine structure. Hear Res 140:45–76

    Article  CAS  PubMed  Google Scholar 

  • Javel E, Viemeister NF (2000) Stochastic properties of cat auditory nerve responses to electric and acoustic stimuli and application to intensity discrimination. J Acoust Soc Am 107:908–921

    Article  CAS  PubMed  Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Johnston J, Forsythe ID, Kopp-Scheinpflug C (2010) Going native: voltage-gated potassium channels controlling neuronal excitability. J Physiol 588:3187–3200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joris PX, Carney LH, Smith PH, Yin TC (1994) Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol 71:1022–1036

    CAS  PubMed  Google Scholar 

  • Kalluri S, Delgutte B (2003) Mathematical models of cochlear nucleus onset neurons: I. Point neuron with many weak synaptic inputs. J Comput Neurosci 14:71–90

    Article  PubMed Central  PubMed  Google Scholar 

  • Karino S, Smith PH, Yin TC, Joris PX (2011) Axonal branching patterns as sources of delay in the mammalian auditory brainstem: a re-examination. J Neurosci Off J Soc Neurosci 31:3016–3031

    Article  CAS  Google Scholar 

  • Kiang NY, Moxon EC (1972) Physiological considerations in artificial stimulation of the inner ear. Ann Otol Rhinol Laryngol 81:714–730

    Article  CAS  PubMed  Google Scholar 

  • Kotak VC, Takesian AE, Sanes DH (2008) Hearing loss prevents the maturation of gabaergic transmission in the auditory cortex. Cereb Cortex 18:2098–2108

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuba H, Yamada R, Fukui I, Ohmori H (2005) Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick. J Neurosci Off J Soc Neurosci 25:1924–1934

    Article  CAS  Google Scholar 

  • Kuba H, Ishii TM, Ohmori H (2006) Axonal site of spike initiation enhances auditory coincidence detection. Nature 444:1069–1072

    Article  CAS  PubMed  Google Scholar 

  • Kuwada S, Yin TC (1983) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. I. Effects of long interaural delays, intensity, and repetition rate on interaural delay function. J Neurophysiol 50:981–999

    CAS  PubMed  Google Scholar 

  • Kuwada S, Stanford TR, Batra R (1987) Interaural phase-sensitive units in the inferior colliculus of the unanesthetized rabbit: effects of changing frequency. J Neurophysiol 57:1338–1360

    CAS  PubMed  Google Scholar 

  • Leao RN, Sun H, Svahn K, Berntson A, Youssoufian M, Paolini AG, Fyffe RE, Walmsley B (2006) Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness. J Physiol 571:563–578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Litovsky RY, Jones GL, Agrawal S, van Hoesel R (2010) Effect of age at onset of deafness on binaural sensitivity in electric hearing in humans. J Acoust Soc Am 127:400–414

    Article  PubMed Central  PubMed  Google Scholar 

  • Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865–2880

    CAS  PubMed  Google Scholar 

  • Mathews PJ, Jercog PE, Rinzel J, Scott LL, Golding NL (2010) Control of submillisecond synaptic timing in binaural coincidence detectors by K(v)1 channels. Nat Neurosci 13:601–609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mckinney MF, Delgutte B (1999) A possible neurophysiological basis of the octave enlargement effect. J Acoust Soc Am 106:2679–2692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller CA, Robinson BK, Rubinstein JT, Abbas PJ, Runge-Samuelson CL (2001) Auditory nerve responses to monophasic and biphasic electric stimuli. Hear Res 151:79–94

    Article  CAS  PubMed  Google Scholar 

  • Mountain DC, Anderson D, Bresnahan G, Deligeorges S, Hubbard A, Vajda V (2005) EarLab: large-scale simulation of auditory pathways. In: The mid-winter meeting of the association for research in otolaryngology

  • Nourski KV, Abbas PJ, Miller CA (2006) Effects of remaining hair cells on cochlear implant function, 15th quarterly progress report, NIH contract N01-DC-2-1005

  • Ohmori H (2014) Neuronal specializations for the processing of interaural difference cues in the chick. Front Neural Circuits 8:47

    Article  PubMed Central  PubMed  Google Scholar 

  • Pecka M, Brand A, Behrend O, Grothe B (2008) Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. J Neurosci Off J Soc Neurosci 28:6914–6925

    Article  CAS  Google Scholar 

  • Poon BB, Eddington DK, Noel V, Colburn HS (2009) Sensitivity to interaural time difference with bilateral cochlear implants: development over time and effect of interaural electrode spacing. J Acoust Soc Am 126:806–815

    Article  PubMed Central  PubMed  Google Scholar 

  • Reyes AD, Rubel EW, Spain WJ (1996) In vitro analysis of optimal stimuli for phase-locking and time-delayed modulation of firing in avian nucleus laminaris neurons. J Neurosci Off J Soc Neurosci 16:993–1007

    CAS  Google Scholar 

  • Rothman JS, Manis PB (2003a) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89:3070–3082

    Article  CAS  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003b) The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. J Neurophysiol 89:3097–3113

    Article  CAS  PubMed  Google Scholar 

  • Rothman JS, Young ED, Manis PB (1993) Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model. J Neurophysiol 70:2562–2583

    CAS  PubMed  Google Scholar 

  • Sachs MB, Abbas PJ (1974) Rate versus level functions for auditorynerve fibers in cats: tone-burst stimuli. J Acoust Soc Am 56:1835–1847

    Article  CAS  PubMed  Google Scholar 

  • Schroeder MR, Hall JL (1974) Model for mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 55:1055–1060

    Article  CAS  PubMed  Google Scholar 

  • Scott LL, Mathews PJ, Golding NL (2005) Posthearing developmental refinement of temporal processing in principal neurons of the medial superior olive. J Neurosci Off J Soc Neurosci 25:7887–7895

    Article  CAS  Google Scholar 

  • Scott LL, Hage TA, Golding NL (2007) Weak action potential backpropagation is associated with high-frequency axonal firing capability in principal neurons of the gerbil medial superior olive. J Physiol 583:647–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shepherd RK, Hardie NA (2001) Deafness-induced changes in the auditory pathway: implications for cochlear implants. Audiol Neurootol 6:305–318

    Article  CAS  PubMed  Google Scholar 

  • Shepherd RK, Javel E (1997) Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hear Res 108:112–144

    Article  CAS  PubMed  Google Scholar 

  • Smith PH (1995) Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice. J Neurophysiol 73:1653–1667

    CAS  PubMed  Google Scholar 

  • Smith ZM, Delgutte B (2007) Sensitivity to interaural time differences in the inferior colliculus with bilateral cochlear implants. J Neurosci 27:6740–6750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith ZM, Delgutte B (2008) Sensitivity of inferior colliculus neurons to interaural time differences in the envelope versus the fine structure with bilateral cochlear implants. J Neurophysiol 99:2390–2407

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith DJ, Rubel EW (1979) Organization and development of brain stem auditory nuclei of the chicken: dendritic gradients in nucleus laminaris. J Comp Neurol 186:213–239

    Article  CAS  PubMed  Google Scholar 

  • Smith PH, Joris PX, Yin TC (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: evidence for delay lines to the medial superior olive. J Comp Neurol 331:245–260

    Article  CAS  PubMed  Google Scholar 

  • Smith KR, Saberi K, Hickok G (2007) An event-related fMRI study of auditory motion perception: no evidence for a specialized cortical system. Brain Res 1150:94–99

    Article  CAS  PubMed  Google Scholar 

  • Snyder R, Leake P, Rebscher S, Beitel R (1995) Temporal resolution of neurons in cat inferior colliculus to intracochlear electrical stimulation: effects of neonatal deafening and chronic stimulation. J Neurophysiol 73:449–467

    CAS  PubMed  Google Scholar 

  • Svirskis G, Kotak V, Sanes DH, Rinzel J (2004) Sodium along with low-threshold potassium currents enhance coincidence detection of subthreshold noisy signals in MSO neurons. J Neurophysiol 91:2465–2473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tillein J, Hubka P, Syed E, Hartmann R, Engel AK, Kral A (2010) Cortical representation of interaural time difference in congenital deafness. Cereb Cortex 20:492–506

    Article  CAS  PubMed  Google Scholar 

  • Trussell LO (1997) Cellular mechanisms for preservation of timing in central auditory pathways. Curr Opin Neurobiol 7:487–492

    Article  CAS  PubMed  Google Scholar 

  • Trussell LO (1999) Synaptic mechanisms for coding timing in auditory neurons. Annu Rev Physiol 61:477–496

    Article  CAS  PubMed  Google Scholar 

  • Vale C, Sanes DH (2000) Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain. J Neurosci Off J Soc Neurosci 20:1912–1921

    CAS  Google Scholar 

  • van Hoesel RJ (2007) Sensitivity to binaural timing in bilateral cochlear implant users. J Acoust Soc Am 121:2192–2206

    Article  PubMed  Google Scholar 

  • van Hoesel RJ (2012) Contrasting benefits from contralateral implants and hearing aids in cochlear implant users. Hear Res 288:100–113

    Article  PubMed  Google Scholar 

  • von Hehn CA, Bhattacharjee A, Kaczmarek LK (2004) Loss of Kv3.1 tonotopicity and alterations in camp response element-binding protein signaling in central auditory neurons of hearing impaired mice. J Neurosci Off J Soc Neurosci 24:1936–1940

    Article  Google Scholar 

  • Wang GI, Delgutte B (2012) Sensitivity of cochlear nucleus neurons to spatio-temporal changes in auditory nerve activity. J Neurophysiol 108:3172–3195

    Article  PubMed Central  PubMed  Google Scholar 

  • Yin TC, Chan JC (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64:465–488

    CAS  PubMed  Google Scholar 

  • Yin TC, Kuwada S, Sujaku Y (1984) Interaural time sensitivity of high-frequency neurons in the inferior colliculus. J Acoust Soc Am 76:1401–1410

    Article  CAS  PubMed  Google Scholar 

  • Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Miller CA, Robinson BK, Abbas PJ, Hu N (2007) Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains. J Assoc Res Otolaryngol 8:356–372

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhou Y, Carney LH, Colburn HS (2005) A model for interaural time difference sensitivity in the medial superior olive: interaction of excitatory and inhibitory synaptic inputs, channel dynamics, and cellular morphology. J Neurosci 25:3046–3058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (Grants R01 DC005775 to B.D. and R01 DC000100 to H.S.C.) and the Hearing Health Foundation (Emerging Research Grant to Y.C.).

Conflict of Interest

None of the authors has conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoojin Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, Y., Delgutte, B. & Colburn, H.S. Modeling Binaural Responses in the Auditory Brainstem to Electric Stimulation of the Auditory Nerve. JARO 16, 135–158 (2015). https://doi.org/10.1007/s10162-014-0492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0492-6

Keywords

Navigation