Skip to main content

Advertisement

Log in

Genes encoding putative biogenic amine receptors in the parasitic nematode Brugia malayi

  • Original Paper
  • Published:
Invertebrate Neuroscience

Abstract

Filarial nematodes, such as Brugia malayi, cause major health problems worldwide. The lack of a vaccine against B. malayi, combined with ineffective chemotherapy against the adult has prompted the examination of biogenic amine receptors (BARs) as possible targets for drug discovery. We employed bioinformatics to identify genes encoding putative B. malayi BARs. Surprisingly, the B. malayi genome contains half of the genes predicted to encode BARs in the genomes of free-living nematodes such as Caenorhabditis elegans or C. briggsae; however, all of the predicted B. malayi receptors have clear orthologues in C. elegans. The B. malayi genes encode each of the major BAR subclasses, including three serotonin, two dopamine and two tyramine/octopamine receptors and the structure of orthologous BAR genes is conserved. We find that potential G-protein coupling and ligand-specificity of individual BARs may be predicted by phylogenetic comparisons. Our results provide a framework for how G-protein coupled receptors may be targeted for drug development in medically important parasitic nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

5-HT:

5-Hydroxytyramine (Serotonin)

aa:

Amino acids

BA:

Biogenic amine

BAR:

Biogenic amine receptor

DA:

Dopamine

GPCR:

G-Protein coupled receptor

MSA:

Multiple sequence alignment

OA:

Octopamine

RACE:

Rapid amplification of cDNA ends

TA:

Tyramine

TM:

Transmembrane

References

  • Alkema MJ, Hunter-Ensor M, Ringstad N, Horvitz HR (2005) Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46:247–260

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Anosike JC, Nwoke BE, Ajayi EG, Onwuliri CO, Okoro OU, Oku EE, Asor JE, Amajuoyi OU, Ikpeama CA, Ogbusu FI, Meribe CO (2005) Lymphatic filariasis among the Ezza people of Ebonyi State, eastern Nigeria. Ann Agric Environ Med 12:181–186

    PubMed  Google Scholar 

  • Backstrom JR, Chang MS, Chu H, Niswender CM, Sanders-Bush E (1999) Agonist-directed signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD). Neuropsychopharmacology 21:77S–81S

    PubMed  CAS  Google Scholar 

  • Ballesteros JA, Shi L, Javitch JA (2001) Structural mimicry in G protein-coupled receptors: Implications of the high-resolution structure of rhodopsin for structure-function analysis of rhodopsin-like receptors. Mol Pharmacol 60:1–19

    PubMed  CAS  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  PubMed  CAS  Google Scholar 

  • Blaxter M, Aslett M, Guiliano D, Daub J (1999) Parasitic helminth genomics. Filarial Genome Project. Parasitology 118(Suppl):S39–S51

    Article  PubMed  CAS  Google Scholar 

  • Blaxter M, Daub J, Guiliano D, Parkinson J, Whitton C (2002) The Brugia malayi genome project: expressed sequence tags and gene discovery. Trans R Soc Trop Med Hyg 96:7–17

    Article  PubMed  Google Scholar 

  • Bouchard C, Ribeiro P, Dube F, Demers C, Anctil M (2004) Identification of a novel aminergic-like G protein-coupled receptor in the cnidarian Renilla koellikeri. Gene 341:67–75

    Article  PubMed  CAS  Google Scholar 

  • Bouvier M, Moffett S, Loisel TP, Mouillac B, Hebert T, Chidiac P (1995) Palmitoylation of G-protein-coupled receptors: a dynamic modification with functional consequences. Biochem Soc Trans 23:116–120

    PubMed  CAS  Google Scholar 

  • Carre-Pierrat M, Baillie D, Johnsen R, Hyde R, Hart A, Granger L, Segalat L (2006) Characterization of the Caenorhabditis elegans G protein-coupled serotonin receptors. Invert Neurosci 6:189–205

    Article  PubMed  CAS  Google Scholar 

  • Chanda PK, Minchin MC, Davis AR, Greenberg L, Reilly Y, McGregor WH, Bhat R, Lubeck MD, Mizutani S, Hung PP (1993) Identification of residues important for ligand binding to the human 5-hydroxytryptamine1A serotonin receptor. Mol Pharmacol 43:516–520

    PubMed  CAS  Google Scholar 

  • Chase DL, Pepper JS, Koelle MR (2004) Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat Neurosci 7:1096–1103

    Article  PubMed  CAS  Google Scholar 

  • Chatwin HM, Rudling JE, Patel D, Reale V, Evans PD (2003) Site-directed mutagenesis studies on the Drosophila octopamine/tyramine receptor. Insect Biochem Mol Biol 33:173–184

    Article  PubMed  CAS  Google Scholar 

  • Collins S (1993) Recent perspectives on the molecular structure and regulation of the beta 2-adrenoceptor. Life Sci 52:2083–2091

    Article  PubMed  CAS  Google Scholar 

  • de Silva N, Guyatt H, Bundy D (1997) Anthelmintics. A comparative review of their clinical pharmacology. Drugs 53:769–788

    Article  PubMed  Google Scholar 

  • Elmhurst JL, Xie Z, O’Dowd BF, George SR (2000) The splice variant D3nf reduces ligand binding to the D3 dopamine receptor: evidence for heterooligomerization. Brain Res Mol Brain Res 80:63–74

    Article  PubMed  CAS  Google Scholar 

  • Fishburn CS, Belleli D, David C, Carmon S, Fuchs S (1993) A novel short isoform of the D3 dopamine receptor generated by alternative splicing in the third cytoplasmic loop. J Biol Chem 268:5872–5878

    PubMed  CAS  Google Scholar 

  • Flanagan CA (2005) A GPCR that is not “DRY”. Mol Pharmacol 68:1–3

    PubMed  CAS  Google Scholar 

  • Gerhardt CC, Bakker RA, Piek GJ, Planta RJ, Vreugdenhil E, Leysen JE, Van Heerikhuizen H (1997) Molecular cloning and pharmacological characterization of a molluscan octopamine receptor. Mol Pharmacol 51:293–300

    PubMed  CAS  Google Scholar 

  • Ghedin E, Wang S, Foster JM, Slatko BE (2004) First sequenced genome of a parasitic nematode. Trends Parasitol 20:151–153

    Article  PubMed  CAS  Google Scholar 

  • Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow CKS, Crawford MJ, Daub J, Dimmic MW, Estes CF, Foster JM, Ganatra M, Gregory WF, Johnson NM, Jin J, Komuniecki R, Korf I, Kumar S, Laney S, Li B-W, Li W, Lindblom TH, Lustigman S, Ma D, Maina CV, Martin DMA, McCarter JP, McReynolds L, Mitreva M, Nutman TB, Parkinson J, Peregrín-Alvarez JM, Poole C, Ren Q, Saunders L, Sluder AE, Smith K, Stanke M, Unnasch TR, Ware J, Wei AD, Weil G, Williams DJ, Zhang Y, Williams SA, Fraser-Liggett C, Slatko B, Blaxter ML, nd Scott AL (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317:1756–1760

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Escobar N, Lewis E, Maizels RM (1998) A novel member of the transforming growth factor-beta (TGF-beta) superfamily from the filarial nematodes Brugia malayi and B. pahangi. Exp Parasitol 88:200–209

    Article  PubMed  CAS  Google Scholar 

  • Guiliano DB, Hall N, Jones SJ, Clark LN, Corton CH, Barrell BG, Blaxter ML (2002) Conservation of long-range synteny and microsynteny between the genomes of two distantly related nematodes. Genome Biol. 3: research0057.0051–research0057.0014

  • Hamdan FF, Ungrin MD, Abramovitz M, Ribeiro P (1999) Characterization of a novel serotonin receptor from Caenorhabditis elegans: cloning and expression of two splice variants. J Neurochem 72:1372–1383

    Article  PubMed  CAS  Google Scholar 

  • Hobson RJ, Geng J, Gray AD, Komuniecki RW (2003) SER-7b, a constitutively active Galphas coupled 5-HT7-like receptor expressed in the Caenorhabditis elegans M4 pharyngeal motorneuron. J Neurochem 87:22–29

    Article  PubMed  CAS  Google Scholar 

  • Hoerauf A (2006) New strategies to combat filariasis. Expert Rev Anti Infect Ther 4:211–222

    Article  PubMed  CAS  Google Scholar 

  • Hofmann K, Stoffel W (1993) Tmbase—a database of membrane spanning proteins segments. Biol Chem Hoppe Seyler 374:166

    Google Scholar 

  • Johnson MS, Robertson DN, Holland PJ, Lutz EM, Mitchell R (2006) Role of the conserved NPxxY motif of the 5-HT2A receptor in determining selective interaction with isoforms of ADP-ribosylation factor (ARF). Cell Signal 18:1793–1800

    Article  PubMed  CAS  Google Scholar 

  • Karpa KD, Lin R, Kabbani N, Levenson R (2000) The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3-D3nf interaction causes mislocalization of D3 receptors. Mol Pharmacol 58:677–683

    PubMed  CAS  Google Scholar 

  • Kroeze WK, Kristiansen K, Roth BL (2002) Molecular biology of serotonin receptors structure and function at the molecular level. Curr Top Med Chem 2:507–528

    Article  PubMed  CAS  Google Scholar 

  • Lee KZ, Eizinger A, Nandakumar R, Schuster SC, Sommer RJ (2003a) Limited microsynteny between the genomes of Pristionchus pacificus and Caenorhabditis elegans. Nucleic Acids Res 31:2553–2560

    Article  PubMed  CAS  Google Scholar 

  • Lee SP, O’Dowd BF, Rajaram RD, Nguyen T, George SR (2003b) D2 dopamine receptor homodimerization is mediated by multiple sites of interaction, including an intermolecular interaction involving transmembrane domain 4. Biochemistry 42:11023–11031

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Bergson C, Levenson R, Schmauss C (1994) On the origin of mRNA encoding the truncated dopamine D3-type receptor D3nf and detection of D3nf-like immunoreactivity in human brain. J Biol Chem 269:29220–29226

    PubMed  CAS  Google Scholar 

  • Livingstone CD, Strange PG, Naylor LH (1992) Molecular modelling of D2-like dopamine receptors. Biochem J 287(Pt 1):277–282

    PubMed  CAS  Google Scholar 

  • Martin GR, Humphrey PP (1994) Receptors for 5-hydroxytryptamine: current perspectives on classification and nomenclature. Neuropharmacology 33:261–273

    Article  PubMed  CAS  Google Scholar 

  • Meldal BHM, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen MC, Blaxter ML, Rogers AD, Lambshead PJD (2007) An improved molecular phylogeny of the Nematoda with special emphasis on marine taxa. Mol Phylogenet Evol 42:622–636

    Article  PubMed  CAS  Google Scholar 

  • Molyneux D (2003) Lymphatic filariasis (elephantiasis) elimination: a public health success and development opportunity. Filaria J 2:13

    Article  PubMed  Google Scholar 

  • Murray J, Manoury B, Balic A, Watts C, Maizels RM (2005) Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Mol Biochem Parasitol 139:197–203

    Article  PubMed  CAS  Google Scholar 

  • Niacaris T, Avery L (2003) Serotonin regulates repolarization of the C. elegans pharyngeal muscle. J Exp Biol 206:223–231

    Article  PubMed  CAS  Google Scholar 

  • Nimchinsky EA, Hof PR, Janssen WG, Morrison JH, Schmauss C (1997) Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J Biol Chem 272:29229–29237

    Article  PubMed  CAS  Google Scholar 

  • O’Halloran DM, Fitzpatrick DA, McCormack GP, McInerney JO, Burnell AM (2006) The molecular phylogeny of a nematode-specific clade of heterotrimeric G-protein alpha-subunit genes. J Mol Evol 63:87–94

    Article  PubMed  CAS  Google Scholar 

  • Olde B, McCombie WR (1997) Molecular cloning and functional expression of a serotonin receptor from Caenorhabditis elegans. J Mol Neurosci 8:53–62

    Article  PubMed  CAS  Google Scholar 

  • Parkinson J, Mitreva M, Hall N, Blaxter M, McCarter JP (2003) 400,000 nematode ESTs on the Net. Trends Parasitol 19:283–286

    Article  PubMed  CAS  Google Scholar 

  • Peroutka SJ, Howell TA (1994) The molecular evolution of G protein-coupled receptors: focus on 5-hydroxytryptamine receptors. Neuropharmacology 33:319–324

    Article  PubMed  CAS  Google Scholar 

  • Pollock NJ, Manelli AM, Hutchins CW, Steffey ME, MacKenzie RG, Frail DE (1992) Serine mutations in transmembrane V of the dopamine D1 receptor affect ligand interactions and receptor activation. J Biol Chem 267:17780–17786

    PubMed  CAS  Google Scholar 

  • Rex E, Komuniecki RW (2002) Characterization of a tyramine receptor from Caenorhabditis elegans. J Neurochem 82:1352–1359

    Article  PubMed  CAS  Google Scholar 

  • Rex E, Hapiak V, Hobson R, Smith K, Xiao H, Komuniecki R (2005) TYRA-2 (F01E11.5): a Caenorhabditis elegans tyramine receptor expressed in the MC and NSM pharyngeal neurons. J Neurochem 94:181–191

    Article  PubMed  CAS  Google Scholar 

  • Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477

    Article  PubMed  CAS  Google Scholar 

  • Rogers CM, Franks CJ, Walker RJ, Burke JF, Holden-Dye L (2001) Regulation of the pharynx of Caenorhabditis elegans by 5-HT, octopamine, and FMRFamide-like neuropeptides. J Neurobiol 49:235–244

    Article  PubMed  CAS  Google Scholar 

  • Rovati GE, Capra V, Neubig RR (2007) The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol Pharmacol 71:959–964

    Article  PubMed  CAS  Google Scholar 

  • Sanyal S, Wintle RF, Kindt KS, Nuttley WM, Arvan R, Fitzmaurice P, Bigras E, Merz DC, Hebert TE, van der Kooy D, Schafer WR, Culotti JG, Van Tol HH (2004) Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J 23:473–482

    Article  PubMed  CAS  Google Scholar 

  • Schmauss C (1996) Enhanced cleavage of an atypical intron of dopamine D3-receptor pre-mRNA in chronic schizophrenia. J Neurosci 16:7902–7909

    PubMed  CAS  Google Scholar 

  • Schwinn DA (1993) Adrenoceptors as models for G protein-coupled receptors: structure, function and regulation. Br J Anaesth 71:77–85

    Article  PubMed  CAS  Google Scholar 

  • Sealfon SC, Chi L, Ebersole BJ, Rodic V, Zhang D, Ballesteros JA, Weinstein H (1995) Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor. J Biol Chem 270:16683–16688

    Article  PubMed  CAS  Google Scholar 

  • Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7(Suppl 1):S10.1–12

    Google Scholar 

  • Soyer OS, Dimmic MW, Neubig RR, nd Goldstein RA (2003) Dimerization in aminergic G-protein-coupled receptors: application of a hidden-site class model of evolution. Biochemistry 42:14522–14531

    Article  PubMed  CAS  Google Scholar 

  • Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D’Eustachio P, Fitch DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1:E45

    Article  PubMed  CAS  Google Scholar 

  • Streit A, Li W, Robertson B, Schein J, Kamal IH, Marra M, Wood WB (1999) Homologs of the Caenorhabditis elegans masculinizing gene her-1 in C. briggsae and the filarial parasite Brugia malayi. Genetics 152:1573–1584

    PubMed  CAS  Google Scholar 

  • Suo S, Ishiura S, Van Tol HH (2004) Dopamine receptors in C. elegans. Eur J Pharmacol 500:159–166

    Article  PubMed  CAS  Google Scholar 

  • Suo S, Kimura Y, Van Tol HH (2006) Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans. J Neurosci 26:10082–10090

    Article  PubMed  CAS  Google Scholar 

  • Tsalik EL, Niacaris T, Wenick AS, Pau K, Avery L, Hobert O (2003) LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system. Dev Biol 263:81–102

    Article  PubMed  CAS  Google Scholar 

  • Vanfleteren JR, Van de Peer Y, Blaxter ML, Tweedie SA, Trotman C, Lu L, Van Hauwaert ML, Moens L (1994) Molecular genealogy of some nematode taxa as based on cytochrome c and globin amino acid sequences. Mol Phylogenet Evol 3:92–101

    Article  PubMed  CAS  Google Scholar 

  • Visiers I, Hassan SA, Weinstein H (2001) Differences in conformational properties of the second intracellular loop (IL2) in 5HT(2C) receptors modified by RNA editing can account for G protein coupling efficiency. Protein Eng 14:409–414

    Article  PubMed  CAS  Google Scholar 

  • Whitton C, Daub J, Quail M, Hall N, Foster J, Ware J, Ganatra M, Slatko B, Barrell B, Blaxter M (2004) A genome sequence survey of the filarial nematode Brugia malayi: repeats, gene discovery, and comparative genomics. Mol Biochem Parasitol 137:215–227

    Article  PubMed  Google Scholar 

  • Williams SA, Lizotte-Waniewski MR, Foster J, Guiliano D, Daub J, Scott AL, Slatko B, Blaxter ML (2000) The filarial genome project: analysis of the nuclear, mitochondrial and endosymbiont genomes of Brugia malayi. Int J Parasitol 30:411–419

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Dernovici S, Ribeiro P (2005) Mutagenesis analysis of the serotonin 5-HT2C receptor and a Caenorhabditis elegans 5-HT2 homologue: conserved residues of helix 4 and helix 7 contribute to agonist-dependent activation of 5-HT2 receptors. J Neurochem 92:375–387

    Article  PubMed  CAS  Google Scholar 

  • Zuurmond HM, Hessling J, Bluml K, Lohse M, Ijzerman AP (1999) Study of interaction between agonists and asn293 in helix VI of human beta(2)-adrenergic receptor. Mol Pharmacol 56:909–916

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH (National Institutes of Health) grant AI045147 to RWK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Gray.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOC 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, K.A., Komuniecki, R.W., Ghedin, E. et al. Genes encoding putative biogenic amine receptors in the parasitic nematode Brugia malayi . Invert Neurosci 7, 227–244 (2007). https://doi.org/10.1007/s10158-007-0058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10158-007-0058-y

Keywords

Navigation