Skip to main content

Advertisement

Log in

Spinal cord stimulation programming: a crash course

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

The aim of this comprehensive review is to provide an instructional guide for providers regarding the parameters and programming of spinal cord stimulation (SCS) devices. Knowing these fundamentals will aid in providing superior pain relief to patients. SCS has four programmable parameters: contact (electrode) selection, amplitude, pulse width, and frequency. Each parameter needs to be accounted for when assessing which program works for which patient. Traditional open-loop systems allow for different “programs,” or combinations of these four parameters, to be pre-set by the provider and medical device representative. These allow for flexibility in the type of stimulation delivered to the patient depending on activity. Patients are also given control over programs and changing the amplitudes of these programs. However, some open-loop systems place the burden of toggling between programs to manage pain control on patients, though this tends to be less in subparesthesia programs. Newer closed-loop systems make it possible for stimulation settings to automatically adjust in response to accelerometry and evoked compound action potential feedback, and therefore have the potential to streamline the patient experience. This article provides practitioners with the basic knowledge of SCS parameters and programming systems. Understanding their use is essential to providing optimal pain relief to patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S, DeBar L, Kerns R, Von Korff M, Porter L, Helmick C (2018) Prevalence of chronic pain and high-impact chronic pain among adults—United States, 2016. MMWR Morb Mortal Wkly Rep 67:1001–1006. https://doi.org/10.15585/mmwr.mm6736a2

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pizzo PA, Clark NM (2012) Alleviating suffering 101--pain relief in the United States. N Engl J Med 366:197–199. https://doi.org/10.1056/NEJMp1109084

    Article  CAS  PubMed  Google Scholar 

  3. Dagenais S, Caro J, Haldeman S (2008) A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J 8:8–20. https://doi.org/10.1016/j.spinee.2007.10.005

    Article  PubMed  Google Scholar 

  4. Talbot L (2003) Failed back surgery syndrome. BMJ 327:985–986. https://doi.org/10.1136/bmj.327.7421.985

    Article  PubMed  PubMed Central  Google Scholar 

  5. Crapanzano JT, Harrison-Bernard LM, Jones MR, Kaye AD, Richter EO, Potash MN (2017) High frequency spinal cord stimulation for complex regional pain syndrome: a case report. Pain Physician 20:E177–e182

    PubMed  Google Scholar 

  6. Mekhail NA, Mathews M, Nageeb F, Guirguis M, Mekhail MN, Cheng J (2011) Retrospective review of 707 cases of spinal cord stimulation: indications and complications. Pain Pract 11:148–153. https://doi.org/10.1111/j.1533-2500.2010.00407.x

    Article  PubMed  Google Scholar 

  7. Turner JA, Loeser JD, Deyo RA, Sanders SB (2004) Spinal cord stimulation for patients with failed back surgery syndrome or complex regional pain syndrome: a systematic review of effectiveness and complications. Pain 108:137–147. https://doi.org/10.1016/j.pain.2003.12.016

    Article  PubMed  Google Scholar 

  8. Chakravarthy K, Fishman MA, Zuidema X, Hunter CW, Levy R (2019) Mechanism of action in burst spinal cord stimulation: review and recent advances. Pain Med 20:S13–S22. https://doi.org/10.1093/pm/pnz073

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pope JE, Falowski S, Deer TR (2015) Advanced waveforms and frequency with spinal cord stimulation: burst and high-frequency energy delivery. Expert Rev Med Devices 12:431–437. https://doi.org/10.1586/17434440.2015.1026805

    Article  CAS  PubMed  Google Scholar 

  10. (2019) Clinician's Manual: Proclaim Implantable Pulse Generator. St. Jude Medical

  11. (2018) Medtronic pain therapy: using intellis neurostimulation system for chronic pain. Medtronic

  12. (2010) Physician Implant Manual: Sensa and Sensa II. Nevro

  13. (2018) Precision S8 Adapter Directions for Use. Boston Scientific

  14. Miller JP, Eldabe S, Buchser E, Johanek LM, Guan Y, Linderoth B (2016) Parameters of spinal cord stimulation and their role in electrical charge delivery: a review. Neuromodulation 19:373–384. https://doi.org/10.1111/ner.12438

    Article  PubMed  Google Scholar 

  15. Roth SG, Lange S, Haller J, De La Cruz P, Kumar V, Wilock M, Paniccioli S, Briotte M, Pilitsis JG (2015) A prospective study of the intra- and postoperative efficacy of intraoperative neuromonitoring in spinal cord stimulation. Stereotact Funct Neurosurg 93:348–354. https://doi.org/10.1159/000437388

    Article  PubMed  Google Scholar 

  16. Molnar G, Barolat G (2014) Principles of cord activation during spinal cord stimulation. Neuromodulation 17(Suppl 1):12–21. https://doi.org/10.1111/ner.12171

    Article  PubMed  Google Scholar 

  17. Sankarasubramanian V, Buitenweg JR, Holsheimer J, Veltink P (2011) Triple leads programmed to perform as longitudinal guarded cathodes in spinal cord stimulation: a modeling study. Neuromodulation 14:401–410; discussion 411. https://doi.org/10.1111/j.1525-1403.2011.00383.x

    Article  PubMed  Google Scholar 

  18. Holsheimer J, Struijk JJ, Tas NR (1995) Effects of electrode geometry and combination on nerve fibre selectivity in spinal cord stimulation. Med Biol Eng Comput 33:676–682. https://doi.org/10.1007/bf02510785

    Article  CAS  PubMed  Google Scholar 

  19. Deer TR (2016) Programming spinal cord stimulation systems. In: Deer TR, Pope JE (eds) Atlas of implantable therapies for pain management, Second edn. Springer-Verlag, New York, pp 49–56. https://doi.org/10.1007/978-1-4939-2110-2

    Chapter  Google Scholar 

  20. North RB, Lanning A, Hessels R, Cutchis PN (1997) Spinal cord stimulation with percutaneous and plate electrodes: side effects and quantitative comparisons. Neurosurg Focus 2:e3. https://doi.org/10.3171/foc.1997.2.1.4

    Article  CAS  PubMed  Google Scholar 

  21. Dura JL, Solanes C, De Andres J, Saiz J (2019) Computational study of the effect of electrode polarity on neural activation related to paresthesia coverage in spinal cord stimulation therapy. Neuromodulation 22:269–279. https://doi.org/10.1111/ner.12909

    Article  PubMed  Google Scholar 

  22. Holsheimer J, Wesselink WA (1997) Effect of anode-cathode configuration on paresthesia coverage in spinal cord stimulation. Neurosurgery 41:654–659; discussion 659-660. https://doi.org/10.1097/00006123-199709000-00030

    Article  CAS  PubMed  Google Scholar 

  23. North RB, Ewend MG, Lawton MT, Piantadosi S (1991) Spinal cord stimulation for chronic, intractable pain: superiority of “multi-channel” devices. Pain 44:119–130. https://doi.org/10.1016/0304-3959(91)90125-h

    Article  PubMed  Google Scholar 

  24. Oakley JC, Krames ES, Stamatos J, Foster AM (2008) Successful long-term outcomes of spinal cord stimulation despite limited pain relief during temporary trialing. Neuromodulation 11:66–73. https://doi.org/10.1111/j.1525-1403.2007.00145.x

    Article  PubMed  Google Scholar 

  25. Burchiel KJ, Anderson VC, Brown FD, Fessler RG, Friedman WA, Pelofsky S, Weiner RL, Oakley J, Shatin D (1996) Prospective, multicenter study of spinal cord stimulation for relief of chronic back and extremity pain. Spine 21:2786–2794

    Article  CAS  PubMed  Google Scholar 

  26. Weinand ME, Madhusudan H, Davis B, Melgar M (2003) Acute vs. prolonged screening for spinal cord stimulation in chronic pain. Neuromodulation 6:15–19. https://doi.org/10.1046/j.1525-1403.2003.03002.x

    Article  PubMed  Google Scholar 

  27. Hoelzer BC, Bendel MA, Deer TR, Eldrige JS, Walega DR, Wang Z, Costandi S, Azer G, Qu W, Falowski SM, Neuman SA, Moeschler SM, Wassef C, Kim C, Niazi T, Saifullah T, Yee B, Oryhan CL, Rosenow JM, Warren DT, Lerman I, Mora R, Hayek SM, Hanes M, Simopoulos T, Sharma S, Gilligan C, Grace W, Ade T, Mekhail NA, Hunter JP, Choi D, Choi DY (2017) Spinal cord stimulator implant infection rates and risk factors: a multicenter retrospective study. Neuromodulation 20:558–562. https://doi.org/10.1111/ner.12609

    Article  PubMed  Google Scholar 

  28. Alo K, Varga C, Krames E, Prager J, Holsheimer J, Manola L, Bradley K (2006) Factors affecting impedance of percutaneous leads in spinal cord stimulation. Neuromodulation 9:128–135. https://doi.org/10.1111/j.1525-1403.2006.00050.x

    Article  PubMed  Google Scholar 

  29. Justiz R 3rd, Bentley I (2014) A case series review of spinal cord stimulation migration rates with a novel fixation device. Neuromodulation 17:37–40; discussion 40-31. https://doi.org/10.1111/ner.12014

    Article  PubMed  Google Scholar 

  30. Gazelka HM, Freeman ED, Hooten WM, Eldrige JS, Hoelzer BC, Mauck WD, Moeschler SM, Pingree MJ, Rho RH, Lamer TJ (2015) Incidence of clinically significant percutaneous spinal cord stimulator lead migration. Neuromodulation 18:123–125; discussion 125. https://doi.org/10.1111/ner.12184

    Article  PubMed  Google Scholar 

  31. Cameron T (2004) Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: a 20-year literature review. J Neurosurg 100:254–267

    PubMed  Google Scholar 

  32. Kinfe TM, Quack F, Wille C, Schu S, Vesper J (2014) Paddle versus cylindrical leads for percutaneous implantation in spinal cord stimulation for failed back surgery syndrome: a single-center trial. J Neurol Surg A Cent Eur Neurosurg 75:467–473. https://doi.org/10.1055/s-0034-1371517

    Article  PubMed  Google Scholar 

  33. Washburn S, Catlin R, Bethel K, Canlas B (2014) Patient-perceived differences between constant current and constant voltage spinal cord stimulation systems. Neuromodulation 17:28–35; discussion 35-26. https://doi.org/10.1111/ner.12085

    Article  PubMed  Google Scholar 

  34. Schade CM, Sasaki J, Schultz DM, Tamayo N, King G, Johanek LM (2010) Assessment of patient preference for constant voltage and constant current spinal cord stimulation. Neuromodulation 13:210–217. https://doi.org/10.1111/j.1525-1403.2010.00284.x

    Article  PubMed  Google Scholar 

  35. Qin C, Martinez M, Tang R, Huynh J, Goodman Keiser M, Farber JP, Carman JC, Wienecke GM, Niederauer G, Foreman RD (2012) Is constant current or constant voltage spinal cord stimulation superior for the suppression of nociceptive visceral and somatic stimuli? A rat model. Neuromodulation 15:132–142; discussion 143. https://doi.org/10.1111/j.1525-1403.2012.00431.x

    Article  PubMed  Google Scholar 

  36. Collison C, Prusik J, Paniccioli S, Briotte M, Grey R, Feustel P, Pilitsis JG (2017) Prospective study of the use of intraoperative neuromonitoring in determining post-operative energy requirements and physiologic midline in spinal cord stimulation. Neuromodulation 20:575–581. https://doi.org/10.1111/ner.12590

    Article  PubMed  Google Scholar 

  37. North RB, Kidd DH, Olin JC, Sieracki JM (2002) Spinal cord stimulation electrode design: prospective, randomized, controlled trial comparing percutaneous and laminectomy electrodes-part I: technical outcomes. Neurosurgery 51:381–389 discussion 389-390

    PubMed  Google Scholar 

  38. Manola L, Holsheimer J (2004) Technical performance of percutaneous and laminectomy leads analyzed by modeling. Neuromodulation 7:231–241. https://doi.org/10.1111/j.1094-7159.2004.04207.x

    Article  PubMed  Google Scholar 

  39. Yearwood TL, Hershey B, Bradley K, Lee D (2010) Pulse width programming in spinal cord stimulation: a clinical study. Pain Physician 13:321–335

    Article  PubMed  Google Scholar 

  40. Holsheimer J, Buitenweg JR, Das J, de Sutter P, Manola L, Nuttin B (2011) The effect of pulse width and contact configuration on paresthesia coverage in spinal cord stimulation. Neurosurgery 68:1452–1461. https://doi.org/10.1227/NEU.0b013e31820b4f47

    Article  PubMed  Google Scholar 

  41. Lee D, Hershey B, Bradley K, Yearwood T (2011) Predicted effects of pulse width programming in spinal cord stimulation: a mathematical modeling study. Med Biol Eng Comput 49:765–774. https://doi.org/10.1007/s11517-011-0780-9

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bushnell MC, Ceko M, Low LA (2013) Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 14:502–511. https://doi.org/10.1038/nrn3516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, O'Callaghan J, Eisenberg E, Milbouw G, Buchser E, Fortini G, Richardson J, North RB (2007) Spinal cord stimulation versus conventional medical management for neuropathic pain: a multicentre randomised controlled trial in patients with failed back surgery syndrome. Pain 132:179–188. https://doi.org/10.1016/j.pain.2007.07.028

    Article  PubMed  Google Scholar 

  44. North RB, Kidd DH, Lee MS, Piantodosi S (1994) A prospective, randomized study of spinal cord stimulation versus reoperation for failed back surgery syndrome: initial results. Stereotact Funct Neurosurg 62:267–272. https://doi.org/10.1159/000098631

    Article  CAS  PubMed  Google Scholar 

  45. Tiede J, Brown L, Gekht G, Vallejo R, Yearwood T, Morgan D (2013) Novel spinal cord stimulation parameters in patients with predominant back pain. Neuromodulation 16:370–375. https://doi.org/10.1111/ner.12032

    Article  PubMed  Google Scholar 

  46. Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R, Sitzman BT, Amirdelfan K, Morgan DM, Brown LL, Yearwood TL, Bundschu R, Burton AW, Yang T, Benyamin R, Burgher AH (2015) Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional Low-frequency spinal cord stimulation for the treatment of chronic Back and leg pain: the SENZA-RCT randomized controlled trial. Anesthesiology 123:851–860. https://doi.org/10.1097/ALN.0000000000000774

    Article  PubMed  Google Scholar 

  47. De Ridder D, Vanneste S, Plazier M, van der Loo E, Menovsky T (2010) Burst spinal cord stimulation: toward paresthesia-free pain suppression. Neurosurgery 66:986–990. https://doi.org/10.1227/01.NEU.0000368153.44883.B3

    Article  PubMed  Google Scholar 

  48. Schu S, Slotty PJ, Bara G, von Knop M, Edgar D, Vesper J (2014) A prospective, randomised, double-blind, placebo-controlled study to examine the effectiveness of burst spinal cord stimulation patterns for the treatment of failed back surgery syndrome. Neuromodulation 17:443–450. https://doi.org/10.1111/ner.12197

    Article  PubMed  Google Scholar 

  49. De Ridder D, Lenders MW, De Vos CC, Dijkstra-Scholten C, Wolters R, Vancamp T, Van Looy P, Van Havenbergh T, Vanneste S (2015) A 2-center comparative study on tonic versus burst spinal cord stimulation: amount of responders and amount of pain suppression. Clin J Pain 31:433–437. https://doi.org/10.1097/AJP.0000000000000129

    Article  PubMed  Google Scholar 

  50. Deer T, Slavin KV, Amirdelfan K, North RB, Burton AW, Yearwood TL, Tavel E, Staats P, Falowski S, Pope J, Justiz R, Fabi AY, Taghva A, Paicius R, Houden T, Wilson D (2018) Success using neuromodulation with BURST (SUNBURST) study: results from a prospective, randomized controlled trial using a novel burst waveform. Neuromodulation 21:56–66. https://doi.org/10.1111/ner.12698

    Article  PubMed  Google Scholar 

  51. Holsheimer J, den Boer JA, Struijk JJ, Rozeboom AR (1994) MR assessment of the normal position of the spinal cord in the spinal canal. AJNR Am J Neuroradiol 15:951–959

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Abejon D, Camacho M, Perez-Cajaraville J, Ortego R, del Pozo C, del Saz J (2009) Effect of posture on spinal cord stimulation in patients with chronic pain syndromes: analysis of energy requirements in different patient postures. Rev Esp Anestesiol Reanim 56:292–298

    Article  CAS  PubMed  Google Scholar 

  53. Cameron T, Alo KM (1998) Effects of posture on stimulation parameters in spinal cord stimulation. Neuromodulation 1:177–183. https://doi.org/10.1111/j.1525-1403.1998.tb00014.x

    Article  CAS  PubMed  Google Scholar 

  54. Olin JC, Kidd DH, North RB (1998) Postural changes in spinal cord stimulation perceptual thresholds. Neuromodulation 1:171–175. https://doi.org/10.1111/j.1525-1403.1998.tb00013.x

    Article  CAS  PubMed  Google Scholar 

  55. Kumar V, Prusik J, Lin Y, Hwang R, Feustel P, Pilitsis JG (2018) Efficacy of alternating conventional stimulation and high frequency stimulation in improving spinal cord stimulation outcomes: a pilot study. Neuromodulation 21:466–471. https://doi.org/10.1111/ner.12755

    Article  PubMed  Google Scholar 

  56. Schade CM, Schultz DM, Tamayo N, Iyer S, Panken E (2011) Automatic adaptation of neurostimulation therapy in response to changes in patient position: results of the Posture Responsive Spinal Cord Stimulation (PRS) Research Study. Pain Physician 14:407–417

    Article  PubMed  Google Scholar 

  57. Figley CR, Stroman PW (2007) Investigation of human cervical and upper thoracic spinal cord motion: implications for imaging spinal cord structure and function. Magn Reson Med 58:185–189. https://doi.org/10.1002/mrm.21260

    Article  CAS  PubMed  Google Scholar 

  58. Anaya CJ, Zander HJ, Graham RD, Sankarasubramanian V, Lempka SF (2019) Evoked potentials recorded from the spinal cord during neurostimulation for pain: a computational modeling study. Neuromodulation. https://doi.org/10.1111/ner.12965

  59. Parker JL, Karantonis DM, Single PS, Obradovic M, Cousins MJ (2012) Compound action potentials recorded in the human spinal cord during neurostimulation for pain relief. Pain 153:593–601. https://doi.org/10.1016/j.pain.2011.11.023

    Article  PubMed  Google Scholar 

  60. Russo M, Cousins MJ, Brooker C, Taylor N, Boesel T, Sullivan R, Poree L, Shariati NH, Hanson E, Parker J (2018) Effective relief of pain and associated symptoms with closed-loop spinal cord stimulation system: preliminary results of the Avalon Study. Neuromodulation 21:38–47. https://doi.org/10.1111/ner.12684

    Article  PubMed  Google Scholar 

  61. Levy R, Deer TR, Poree L, Rosen SM, Kapural L, Amirdelfan K, Soliday N, Leitner A, Mekhail N (2019) Multicenter, randomized, double-blind study protocol using human spinal cord recording comparing safety, efficacy, and neurophysiological responses between patients being treated with evoked compound action potential-controlled closed-loop spinal cord stimulation or open-loop spinal cord stimulation (the Evoke Study). Neuromodulation 22:317–326. https://doi.org/10.1111/ner.12932

    Article  PubMed  Google Scholar 

  62. Staudt MD, Sweet JA (2018) Occipital nerve stimulation. In: Raslan AM, Burchiel KJ (eds) Functional Neurosurgery and Neuromodulation. Elsevier, pp 55–62. https://doi.org/10.1016/C2016-0-01362-1

  63. Sweet JA, Mitchell LS, Narouze S, Sharan AD, Falowski SM, Schwalb JM, Machado A, Rosenow JM, Petersen EA, Hayek SM, Arle JE, Pilitsis JG (2015) Occipital nerve stimulation for the treatment of patients with medically refractory occipital neuralgia: congress of neurological surgeons systematic review and evidence-based guideline. Neurosurgery 77:332–341. https://doi.org/10.1227/NEU.0000000000000872

    Article  PubMed  Google Scholar 

  64. Falowski S, Wang D, Sabesan A, Sharan A (2010) Occipital nerve stimulator systems: review of complications and surgical techniques. Neuromodulation 13:121–125. https://doi.org/10.1111/j.1525-1403.2009.00261.x

    Article  PubMed  Google Scholar 

  65. Finch P, Price L, Drummond P (2019) High-frequency (10 kHz) electrical stimulation of peripheral nerves for treating chronic pain: a double-blind trial of presence vs absence of stimulation. Neuromodulation 22:529–536. https://doi.org/10.1111/ner.12877

    Article  PubMed  Google Scholar 

  66. Garcia-Ortega R, Edwards T, Moir L, Aziz TZ, Green AL, FitzGerald JJ (2019) Burst occipital nerve stimulation for chronic migraine and chronic cluster headache. Neuromodulation 22:638–644. https://doi.org/10.1111/ner.12977

    Article  PubMed  Google Scholar 

  67. North RB, Kidd DH, Farrokhi F, Piantadosi SA (2005) Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial. Neurosurgery 56:98–106; discussion 106-107. https://doi.org/10.1227/01.neu.0000144839.65524.e0

    Article  PubMed  Google Scholar 

  68. Duse G, Reverberi C, Dario A (2019) Effects of multiple waveforms on patient preferences and clinical outcomes in patients treated with spinal cord stimulation for leg and/or back pain. Neuromodulation 22:200–207. https://doi.org/10.1111/ner.12899

    Article  PubMed  Google Scholar 

  69. Head J, Mazza J, Sabourin V, Turpin J, Hoelscher C, Wu C, Sharan A (2019) Waves of pain relief: a systematic review of clinical trials in spinal cord stimulation waveforms for the treatment of chronic neuropathic low back and leg pain. World Neurosurg 131:264–274 e263. https://doi.org/10.1016/j.wneu.2019.07.167

    Article  PubMed  Google Scholar 

  70. Kriek N, Groeneweg JG, Stronks DL, de Ridder D, Huygen FJ (2017) Preferred frequencies and waveforms for spinal cord stimulation in patients with complex regional pain syndrome: a multicentre, double-blind, randomized and placebo-controlled crossover trial. Eur J Pain 21:507–519. https://doi.org/10.1002/ejp.944

    Article  CAS  PubMed  Google Scholar 

  71. Reddy RD, Moheimani R, Yu GG, Chakravarthy KV (2019) A review of clinical data on salvage therapy in spinal cord stimulation. Neuromodulation. https://doi.org/10.1111/ner.13067

  72. Fishman MA, Antony A, Esposito M, Deer T, Levy R (2019) The evolution of neuromodulation in the treatment of chronic pain: forward-looking perspectives. Pain Med 20:S58–S68. https://doi.org/10.1093/pm/pnz074

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Liam McCarthy of Abbott for his guidance regarding basics of programming, and Michael Gillogly for his summary of clinical considerations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie G. Pilitsis.

Ethics declarations

Conflict of interest

Dr. Pilitsis is a consultant for Boston Scientific, Nevro, TerSera, and Abbott and receives grant support from Medtronic, Boston Scientific, Abbott, Nevro, TerSera, NIH U44NS115111, and NIH 2R01CA166379-06. She is a medical advisor for Aim Medical Robotics and Karuna and has stock equity. The remaining authors have no conflicts of interest to report.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheldon, B., Staudt, M.D., Williams, L. et al. Spinal cord stimulation programming: a crash course. Neurosurg Rev 44, 709–720 (2021). https://doi.org/10.1007/s10143-020-01299-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-020-01299-y

Keywords

Navigation