Skip to main content
Log in

Genome-Wide Association Study Reveals Multiple Novel QTL Associated with Low Oxygen Tolerance in Hybrid Catfish

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Hypoxic condition is common in aquaculture, leading to major economic losses. Genetic analysis of hypoxia tolerance, therefore, is not only scientifically significant, but also economically important. Catfish is generally regarded as being highly tolerant to low dissolved oxygen, but variations exist among various populations, strains, and species. In this study, we conducted a genome-wide association study (GWAS) using the catfish 250 K SNP array to identify quantitative trait locus (QTL) associated with tolerance to low dissolved oxygen in the channel catfish × blue catfish interspecific system. Four linkage groups (LG2, LG4, LG23, and LG29) were found to be associated with low oxygen tolerance in hybrid catfish. Multiple significant SNPs were found to be physically linked in genomic regions containing significant QTL for low oxygen tolerance on LG2 and LG23, and in those regions containing suggestively significant QTL on LG2, LG4, LG23, and LG29, suggesting that the physically linked SNPs were genuinely segregating and related with low oxygen tolerance. Analysis of genes within the associated genomic regions suggested that many of these genes were involved in VEGF, MAPK, mTOR, PI3K-Akt, P53-mediated apoptosis, and DNA damage checkpoint pathways. Comparative analysis indicated that most of the QTL at the species level, as analyzed by using the interspecific system, did not overlap with those identified from six strains of channel catfish, confirming the complexity of the genetic architecture of hypoxia tolerance in catfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18:2893–2904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buentello JA, Gatlin DMI, Neill WH (2000) Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization, and growth of channel catfish (Ictalurus punctatus). Aquaculture 182:339–352

    Article  Google Scholar 

  • Burggren WW, Cameron JN (1980) Anaerobic metabolism, gas exchange, and acid-base balance during hypoxic exposure in the channel catfish, Ictalurus punctatus. J Exp Zool 213:405–416

    Article  CAS  Google Scholar 

  • Bustamante CD, Francisco M, Burchard EG (2011) Genomics for the world. Nature 475:163–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC, Altshuler D, Ardlie KG, Hirschhorn JN (2005) Demonstrating stratification in a European American population. Nat Genet 37:868–872

    Article  CAS  PubMed  Google Scholar 

  • Carlson AR, Blocher J, Herman LJ (1980) Growth and survival of channel catfish and yellow perch exposed to lowered constant and diurnally fluctuating dissolved oxygen concentrations. Prog Fish Cult 42:73–78

    Article  Google Scholar 

  • Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521

  • de Lorenzo C, Greco A, Fiorentino TV, Mannino GC, Hribal ML (2013) Variants of insulin-signaling inhibitor genes in type 2 diabetes and related metabolic abnormalities. Int J Genomics 2013:376454

    Article  PubMed  PubMed Central  Google Scholar 

  • Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713

  • Dotto GP (2000) P21WAF1/Cip1: more than a break to the cell cycle? Biochim Biophys Acta 1471:M43–M56

  • Dou P, Zhang D, Cheng Z, Zhou G, Zhang L (2016) PKIB promotes cell proliferation and the invasion-metastasis cascade through the PI3K/Akt pathway in NSCLC cells. Exp Biol Med 241:1911–1918

  • Dunham RA (2011) Aquaculture and fisheries biotechnology: genetic approaches, 2nd edn. CABI Publishing, Wallingford

    Book  Google Scholar 

  • Dunham RA, Masser MP (2012) Production of hybrid catfish. Southern Regional Aquaculture Center, Stoneville

    Google Scholar 

  • Dunham RA, Ramboux AC, Perera DA (2014) Effect of strain on tolerance of low dissolved oxygen of channel × blue catfish hybrids. Aquaculture 420:25–28

    Article  Google Scholar 

  • Dunham RA, Smitherman RO (1987) Genetics and breeding of catfish. Regional Research Bulletin 325, Southern Cooperative Series. Alabama Agricultural Experiment Station, Auburn University

  • Dunham RA, Smitherman RO, Webber C (1983) Relative tolerance of channel × blue hybrid and channel catfish to low oxygen concentrations. Prog Fish Cult 45:55–57

    Article  Google Scholar 

  • Dunham RA, Umali GM, Beam R, Kristanto AH, Trask M (2008) Comparison of production traits of the NWAC103 channel catfish, NWAC103 channel × blue hybrids, Kansas select 21 channel catfish and blue catfish grown at commercial densities and exposed to natural bacterial epizootics. N Am J Aquac 70:98–106

  • Ella MO (1984) Genotype-environment interactions for growth rate of blue, channel and hybrid catfish grown at varying stocking densities. Masters of Science Thesis, Auburn University

  • Geng X, Feng J, Liu SK, Wang Y, Arias C, Liu ZJ (2014) Transcriptional regulation of hypoxia inducible factors alpha (HIF-α) and their inhibiting factor (FIH-1) of channel catfish (Ictalurus punctatus) under hypoxia. Comp Biochem Physiol B 169:38–50

    Article  CAS  PubMed  Google Scholar 

  • Geng X, Liu SK, Yao J, Bao LS, Zhang JR, Li C, Wang RJ, Sha J, Zeng P, Zhi DG, Liu ZJ (2016) A genome wide association study identifies multiple regions associated with head size in catfish. G3 (Bethesda) 6:3389–3398

  • Geng X, Sha J, Liu SK, Bao LS, Zhang JR, Wang RJ, Yao J, Li C, Feng JB, Sun FY, Sun LY, Jiang C, Zhang Y, Chen AL, Dunham R, Zhi DG, Liu ZJ (2015) A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTL for columnaris disease resistance. BMC Genomics 16:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Giudice JJ (1966) Growth of a blue × channel catfish hybrid as compared to its parent species. Prog Fish Cult 28:142–145

    Article  Google Scholar 

  • Gracey AY, Lee TH, Higashi RM, Fan T (2011) Hypoxia-induced mobilization of stored triglycerides in the euryoxic goby Gillichthys mirabilis. J Exp Biol 214:3005–3012

    Article  CAS  PubMed  Google Scholar 

  • Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci USA 98:1993–1998

  • Hochachka PW (1997) Oxygen—a key regulatory metabolite in metabolic defense against hypoxia. Am Zool 37:595–603

    Article  CAS  Google Scholar 

  • Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 134:714–717

    Article  CAS  PubMed  Google Scholar 

  • Jin YL, Zhou T, Geng X, Liu SK, Chen AL, Yao J, Jiang C, Tan SX, Su B, Liu ZJ (2016) A genome-wide association study of heat stress-associated SNPs in catfish. Anim Genet. doi:10.1111/age.12482

  • Ju Z, Wells MC, Heater SJ, Walter RB (2007) Multiple tissue gene expression analyses in Japanese medaka (Oryzias latipes) exposed to hypoxia. Comp Biochem Physiol C 145:134–144

    Google Scholar 

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karar J, Maity A (2011) PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci 4:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kietzmann T, Mennerich D, Dimova EY (2016) Hypoxia-inducible factors (HIFs) and phosphorylation: impact on stability, localization, and transactivity. Front Cell Dev Biol 4:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Kramer DL (1987) Dissolved oxygen and fish behavior. Environ Biol Fish 18:81–92

    Article  Google Scholar 

  • Kramer DL, McClure M (1982) Aquatic surface respiration, a widespread adaptation to hypoxia in tropical freshwater fishes. Environ Biol Fish 7:47–55

    Article  Google Scholar 

  • Kucuktas H, Wang SL, Li P, He CB, Xu P, Sha ZX, Liu H, Jiang YL, Baoprasertkul P, Somridhivej B, Wang Y, Abernathy J, Guo XM, Liu L, Muir W, Liu ZJ (2009) Construction of genetic linkage maps and comparative genome analysis of catfish using gene-associated markers. Genetics 181:1649–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar J, Yumnam S, Basu T, Ghosh A, Garg G, Karthikeyan G, Sengupta S (2011) Association of polymorphisms in 9p21 region with CAD in north Indian population: replication of SNPs identified through GWAS. Clin Genet 79:588–593

    Article  CAS  PubMed  Google Scholar 

  • Kvamme BO, Gadan K, Finne-Fridell F, Niklasson L, Sundh H, Sundell K, Taranger GL, Evensen O (2013) Modulation of innate immune responses in Atlantic salmon by chronic hypoxia-induced stress. Fish Shellfish Immunol 34:55–65

    Article  CAS  PubMed  Google Scholar 

  • Lakin ND, Jackson SP (1999) Regulation of p53 in response to DNA damage. Oncogene 18:7644–7655

    Article  CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liepelt A, Karbe L, Westendorf J (1995) Induction of DNA strand breaks in rainbow trout Oncorhynchus mykiss under hypoxic and hyperoxic conditions. Aquat Toxicol 33:177–181

    Article  CAS  Google Scholar 

  • Liu SK, Sun LY, Li Y, Sun FY, Jiang YL, Zhang Y, Zhang JR, Feng JB, Kaltenboeck L, Kucuktas H, Liu ZJ (2014) Development of the catfish 250 K SNP array for genome-wide association studies. BMC Res Notes 7:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu ZJ, Li P, Argue B, Dunham R (1999) Random amplified polymorphic DNA markers: usefulness for gene mapping and analysis of genetic variation of catfish. Aquaculture 174:59–68

    Article  CAS  Google Scholar 

  • Liu ZJ, Liu SK, Yao J, Bao LS, Zhang JR, Li Y, Jiang C, Sun LY, Wang RJ, Zhang Y, Zhou T, Zeng QF, Fu Q, Gao S, Li N, Koren S, Jiang YL, Zimin A, Xu P, Phillippy AM, Geng X, Song L, Sun FY, Li C, Wang XZ, Chen AL, Jin YL, Yuan ZH, Yang YJ, Tan SX, Peatman E, Lu JG, Qin ZK, Dunham R, Li ZX, Sonstegard T, Feng JB, Danzmann RG, Schroeder S, Scheffler B, Duke MV, Ballard L, Kucuktas H, Kaltenboeck L, Liu HX, Armbruster J, Xie YJ, Kirby ML, Tian Y, Flanagan ME, Mu WJ, Waldbieser GC (2016) The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun 7:11757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maitland ML, Lou XJ, Ramirez J, Desai AA, Berlin DS, McLeod HL, Weichselbaum RR, Ratain MJ, Altman RB, Klein TE (2010) Vascular endothelial growth factor pathway. Pharmacogenet Genomics 20:346–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1999) Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 3:707–716

    Article  CAS  PubMed  Google Scholar 

  • Melnychuk MC, Chapman LJ (2002) Hypoxia tolerance of two haplochromine cichlids: swamp leakage and potential for interlacustrine dispersal. Environ Biol Fish 65:99–110

    Article  Google Scholar 

  • Miao HQ, Soker S, Feiner L, Alonso JL, Raper JA, Klagsbrun M (1999) Neuropilin-1 mediates collapsin-1/semaphorin III inhibition of endothelial cell motility. J Cell Biol 146:233–242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafa SA, Al-Subiai SN, Davies SJ, Jha AN (2011) Hypoxia-induced oxidative DNA damage links with higher level biological effects including specific growth rate in common carp, Cyprinus carpio L. Ecotoxicology 20:1455–1466

    Article  CAS  PubMed  Google Scholar 

  • Nikinmaa M, Rees BB (2005) Oxygen-dependent gene expression in fishes. Am J Physiol Regul Integr Comp Physiol 288:R1079–R1090

    Article  CAS  PubMed  Google Scholar 

  • Nishimura S, Watanabe T, Mizoshita K, Tatsuda K, Fujita T, Watanabe N, Sugimoto Y, Takasuga A (2012) Genome-wide association study identified three major QTL for carcass weight including the PLAG1-CHCHD7 QTN for stature in Japanese black cattle. BMC Genet 13:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohno H, Shirato K, Sakurai T, Ogasawara J, Sumitani Y, Sato S, Imaizumi K, Ishida H, Kizaki T (2012) Effect of exercise on HIF-1 and VEGF signaling. J Phys Fitness Sports Med 1:5–16

  • Padilla PA, Roth MB (2001) Oxygen deprivation causes suspended animation in the zebrafish embryo. Proc Natl Acad Sci U S A 98:7331–7335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petroulakis E, Mamane Y, Le Bacquer O, Shahbazian D, Sonenberg N (2006) mTOR signaling: implications for cancer and anticancer therapy. Br J Cancer 94:195–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter CJ, Pedraza LG, Huang H, Xu T (2003) The tuberous sclerosis complex (TSC) pathway and mechanism of size control. Biochem Soc Trans 31:584–586

    Article  CAS  PubMed  Google Scholar 

  • Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11:459–463

  • Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, Baker A, Anand-Apte B (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9:407–415

  • Richter JD, Sonenberg N (2005) Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477–480

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88:1474–1480

    CAS  PubMed  Google Scholar 

  • Shang EHH, Wu RSS (2004) Aquatic hypoxia is a teratogen and affects fish embryonic development. Environ Sci Technol 38:4763–4767

    Article  CAS  PubMed  Google Scholar 

  • Shang EHH, Yu RMK, Wu RSS (2006) Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ Sci Technol 40:3118–3122

    Article  CAS  PubMed  Google Scholar 

  • She QB, Bode AM, Ma WY, Chen NY, Dong Z (2001) Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res 61:1604–1610

  • Shoemaker CA, Olivares-Fuster O, Arias CR, Klesius PH (2008) Flavobacterium columnare genomovar influences mortality in channel catfish (Ictalurus punctatus). Vet Microbiol 127:353–359

    Article  CAS  PubMed  Google Scholar 

  • Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7:S10

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramaniam D, Ramalingam S, Linehan DC, Dieckgraefe BK, Postier RG, Houchen CW, Jensen RA, Anant S (2011) RNA binding protein CUGBP2/CELF2 mediates curcumin-induced mitotic catastrophe of pancreatic cancer cells. PLoS One 6:e16958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian C, Gregersen PK, Seldin MF (2008) Accounting for ancestry: population substructure and genome-wide association studies. Hum Mol Genet 17:R143–R150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ton C, Stamatiou D, Dzau VJ, Liew CC (2002) Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochem Biophys Res Commun 296:1134–1142

  • Ton C, Stamatiou D, Liew CC (2003) Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genomics 13:97–106

    Article  CAS  PubMed  Google Scholar 

  • Torrans EL (2008) Production responses of channel catfish to minimum daily dissolved oxygen concentrations in earthen ponds. N Am J Aquac 70:371–381

  • Towner RA, Jensen RL, Vaillant B, Colman H, Saunders D, Giles CB, Wren JD (2013) Experimental validation of 5 in-silico predicted glioma biomarkers. Neuro-Oncology 15:1625–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Meer DLM, van den Thillart GEEJM, Witte F, de Bakker MAG, Besser J, Richardson MK, Spaink HP, Leito JTD, Bagowski CP (2005) Gene expression profiling of the long-term adaptive response to hypoxia in the gills of adult zebrafish. Am J Physiol Regul Integr Comp Physiol 289:R1512–R1519

    Article  PubMed  Google Scholar 

  • Wang J, Quan N, Henkin J (1998) Human endothelial cells are exceptionally sensitive to loss of methionine aminopeptidase-2 (MetAP2). Proc Am Assoc Cancer Res 39:98

  • Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, Hollander MC, O’ Connor PM, Fornace AJ Jr, Harris CC (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci USA 96:3706–3711

  • Wang XZ, Liu SK, Dunham R, Liu ZJ (2017b) Effects of strain and body weight on low-oxygen tolerance of channel catfish (Ictalurus punctatus). Aquac Int. doi:10.1007/s10499-017-0125-2

  • Wang XZ, Liu SK, Jiang C, Geng X, Zhou T, Li N, Bao LS, Li Y, Yao J, Yang YJ, Zhong XX, Jin YL, Dunham R, Liu ZJ (2017a) Multiple across-strain and within-strain QTL suggest highly complex genetic architecture for hypoxia tolerance in channel catfish. Mol Gen Genomics 292:63–76

  • Welker TL, Mcnulty ST, Klesius PH (2007) Effect of sublethal hypoxia on the immune response and susceptibility of channel catfish, Ictalurus punctatus, to enteric septicemia. J World Aquacult Soc 38:12–23

    Article  Google Scholar 

  • Wu C, Hu ZB, Yu DK, Huang LM, Jin GF, Liang J, Guo H, Tan W, Zhang MF, Qian J, Lu DR, Wu TC, Lin DX, Shen HB (2009) Genetic variants on chromosome 15q25 associated with lung cancer risk in Chinese populations. Cancer Res 69:5065–5072

  • Wu GS (2004) The functional interactions between the p53 and MAPK signaling pathways. Cancer Biol Ther 3:156–161

    Article  CAS  PubMed  Google Scholar 

  • Wu RSS (2002) Hypoxia: from molecular responses to ecosystem responses. Mar Pollut Bull 45:35–45

    Article  CAS  PubMed  Google Scholar 

  • Wu RSS, Zhou BS, Randall DJ, Woo NYS, Lam PKS (2003) Aquatic hypoxia is an endocrine disruptor and impairs fish reproduction. Environ Sci Technol 37:1137–1141

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Griffith EC, Sage J, Jacks T, Liu JO (2000) Cell cycle inhibition by the anti-angiogenic agent TNP-470 is mediated by p53 and p21WAF1/CIP1. Proc Natl Acad Sci USA 97:6427–6432

  • Zielonka M, Xia J, Friedel RH, Offermanns S, Worzfeld T (2010) A systematic expression analysis implicates Plexin-B2 and its ligand Sema4C in the regulation of the vascular and endocrine system. Exp Cell Res 316:2477–2486

Download references

Acknowledgements

The authors thank Jun Yao, Yun Li, Sen Gao, and Qiang Fu for help with hypoxia challenge and sample collection. Thanks are given to Ludmilla Kaltenboeck and Huseyin Kucuktas for their technical assistance. Xiaoxiao Zhong was supported by scholarships from the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjiang Liu.

Ethics declarations

Funding

This project was supported by USDA Aquaculture Research Program Competitive Grant no. 2014-70007-22395, and by Agriculture and Food Research Initiative Competitive Grant no. 2015-67015-22975 from Animal Disease Program, and 2015-67015-22907 from the Tools and Resources - Animal Breeding, Genetics and Genomics Program of the USDA National Institute of Food and Agriculture (NIFA).

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

The experiment was undertaken with the approval of the Institutional Animal Care and Use Committee (IACUC) at Auburn University. Blood samples were collected after euthanasia. All animal procedures were carried out according to the Guide for the Care and Use of Laboratory Animals and the Animal Welfare Act in the United States.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, X., Wang, X., Zhou, T. et al. Genome-Wide Association Study Reveals Multiple Novel QTL Associated with Low Oxygen Tolerance in Hybrid Catfish. Mar Biotechnol 19, 379–390 (2017). https://doi.org/10.1007/s10126-017-9757-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-017-9757-5

Keywords

Navigation