Skip to main content
Log in

Conjugative plasmid mediated inducible nickel resistance in Hafnia alvei 5-5

  • Research Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Hafnia alvei 5-5, isolated from a soil-litter mixture underneath the canopy of the nickel-hyperaccumulating tree Sebertia acuminata (Sapotaceae) in New Caledonia, was found to be resistant to 30 mM Ni2+ or 2 mM Co2+. The 70-kb plasmid, pEJH 501, was transferred by conjugation to Escherichia coli, Serratia marcescens, and Klebsiella oxytoca. Transconjugant strains expressed inducible nickel resistance to between 5 and 17 mM Ni2+, and cobalt resistance to 2 mM Co2+. A 4.8-kb SalEcoRI fragment containing the nickel resistance determinant was subcloned, and the hybrid plasmid was found to confer a moderate level of resistance to nickel (7 mM Ni2+) even to E. coli. The expression of nickel resistance was inducible by exposure to nickel chloride at a concentration as low as 0.5 mM Ni2+. By random TnphoA′-1 insertion mutagenesis, the fragment was shown to have structural genes as well as regulatory regions for nickel resistance. Southern hybridization studies showed that the nickel-resistance determinant from pEJH501 of H. alvei 5-5 was homologous to that of pTOM9 from Alcaligenes xylosoxydans 31A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7A–C.

Similar content being viewed by others

Abbreviations

MIC :

Minimal inhibitory concentration

CFUs :

Colony-forming units

ars :

Arsenite

cnr :

Cobalt and nickel resistance

czc :

Cadmium, zinc and cobalt

ncc :

Nickel and cobalt

nre :

Nickel resistance

Tn:

Transposon

References

  1. Brim H, Heyndrickx M, deVos P, Wilmotte A, Springer D, Schlegel HG, Mergeay M (1999) Amplified rDNA restriction analysis and further genotypic characterization of metal-resistant soil bacteria and related facultative hydrogenotrophs. Syst Appl Microbiol 22:258–268

    CAS  PubMed  Google Scholar 

  2. Diorio C, Cai J, Marmor J, Shinder R, Dubow MS (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxication and is conserved in gram-negative bacteria. J Bacteriol 177:2050–2056

    CAS  PubMed  Google Scholar 

  3. Grass G, Große C, Nies DH (2000) Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. Strain CH34. J Bacteriol 182:1390–1398

    Article  CAS  PubMed  Google Scholar 

  4. Grass G, Fan B, Rosen BP, Lemke K, Schlegel HG, Rensing C (2001) NreB from Achromobacter xylosoxidans 31A is a nickel-induced transporter conferring nickel resistance. J Bacteriol 183:2803–2807

    Article  CAS  PubMed  Google Scholar 

  5. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    CAS  PubMed  Google Scholar 

  6. Hancock REW, Reeves P (1975) Bacteriophage resistance in Escherichia coli K-12: general pattern of resistance. J Bacteriol 121:983–993

    CAS  PubMed  Google Scholar 

  7. Jobling MG, Ritchie DA (1987) Genetic and physical analysis of plasmid genes expressing inducible resistance to tellurite in Escherichia coli. Mol Gen Genet 208:288–293

    CAS  PubMed  Google Scholar 

  8. Lejeune P, Mergeay M, Gijsegem FV, Faelen M, Gerits J, Toussaint A (1983) Chromosome transfer and R-prime plasmid formation mediated by plasmid pULB113 (RP4::Mini-Mu) in Alcaligenes eutrophus CH34 and Pseudomonas fluorescens 6.2. J Bacteriol 155:1015–1026

    CAS  PubMed  Google Scholar 

  9. Liesegang H, Lemke K, Siddiqui RA, Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34, J Bacteriol 175:767–778

    CAS  PubMed  Google Scholar 

  10. Lim CK, Cooksey DA (1993) Characterization of chromosomal homologs of the plasmid-borne copper resistance operon of Pseudomonas syringae. J Bacteriol 175:4492–4498

    CAS  PubMed  Google Scholar 

  11. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    CAS  PubMed  Google Scholar 

  12. Metcalf WW, Wanner BL (1991) Involvement of the Escherichia coli phn (psiD) gene cluster in assimilation of phosphorus in the form of phosphorus in the form of phosphonates, phoshite, Pi esters, and Pi. J Bacteriol 173:587–600

    CAS  PubMed  Google Scholar 

  13. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory , Cold Spring Harbor, New York

  14. Nies, DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from Alcaligenes eutrophus functions as a cation-proton antiporter in Escherichia coli. J Bacteriol 177:2707–2712

    CAS  PubMed  Google Scholar 

  15. Nies DH, Mergeay M, Friedrich B, Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. J Bacteriol 169:4865–4868

    CAS  PubMed  Google Scholar 

  16. Nies A, Nies DH, Silver S (1989) Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J Bacteriol 171:5065-5070

    CAS  PubMed  Google Scholar 

  17. Rensing C, Pribyl T, Nies DH (1997) New functions for the three subunits of the CzcCBA cation-proton antiporter. J Bacteriol 179:6871–6879

    CAS  PubMed  Google Scholar 

  18. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2ndedn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  19. Schlegel HG, Cosson J-P, Baker AJM (1991) Nickel-hyperaccumulating plants provide a niche for nickel-resistant bacteria. Bot Acta 104:18–25

    CAS  Google Scholar 

  20. Schmidt T, Schlegel HG (1989) Nickel and cobalt resistance of various bacteria isolated from soil and highly polluted domestic and industrial wastes. FEMS Microbiol Ecol 62:315–328

    Article  CAS  Google Scholar 

  21. Schmidt T, Stoppel R, Schlegel HG (1991) High-level nickel resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2. Appl Environ Microbiol 57:3301–3309

    CAS  Google Scholar 

  22. Schmidt T, Schlegel HG (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176:7045–7054

    CAS  PubMed  Google Scholar 

  23. Sensfuss C, Schlegel HG (1988) Plasmid pMOL28-encoded resistance to nickel is due to specific efflux. FEMS Microbiol Lett 55:295–298

    Article  CAS  Google Scholar 

  24. Siddiqui RA, Benthin K, Schlegel HG (1989) Cloning of pMOL28-encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp. J Bacteriol 171:5071–5078

    CAS  PubMed  Google Scholar 

  25. Silver S, Nucifora G, Chu I, Misra TK (1989) Bacterial resistance ATPase: primary pumps for exporting toxic cations and anions. Trends Biochem Sci 14:76–80

    Google Scholar 

  26. Silver S, Nucifora G, Phung LT (1993) Human Menkes X-chromosome disease and the staphylococcal cadmium-resistance ATPase: a remarkable similarity in protein sequences. Mol Microbiol 10:7–12

    CAS  PubMed  Google Scholar 

  27. Smith DH (1967) R-factors mediate resistance to mercury, nickel and cobalt. Science 156:1114–1116

    CAS  PubMed  Google Scholar 

  28. Stoppel RD, Schlegel HG (1995) Nickel-resistant bacteria from anthropogenically nickel-polluted and naturally nickel-percolated ecosystems. Appl Environ Microbiol 61:2276–2285

    CAS  Google Scholar 

  29. Stoppel RD, Meyer M, Schlegel HG (1995) The nickel resistance determinant cloned from the enterobacterium Klebsiella oxytoca: conjugational transfer, expression, regulation and DNA homologies to various nickel-resistant bacteria. Biometals 8:70–79

    CAS  PubMed  Google Scholar 

  30. Taghavi S, Mergeay M, van der Lelie D (1997) Genetic and physical map of the Alcaligenes eutrophus CH34 megaplasmid pMOL28 and its derivative pMOL50 obtained after temperature induced mutagenesis and mortality. Plasmid 37:22–34

    Article  CAS  PubMed  Google Scholar 

  31. Timotius K, Schlegel HG (1987) Aus Abwässern isolierte nickel-resistente Bakterien. Nachrichten der Akademie der Wissenschaften in Göttingen 3:15–23

  32. Wilmes-Riesenberg MR, Wanner BL (1992) TnphoA and TnphoA' elements for making and switching fusions for study of transcription, translation, and cell surface localization. J Bacteriol 174:4558–4575

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of the Korean Research Foundation made in the program year of 1998 (015-D00216) and the German Alexander von Humboldt-Stiftung. We thank Maria Meyer for excellent technical assistance and Dr. S. Verbarg, Deutsche Sammlung von Mikroorganismen, for help in identifying the isolates from New Caledonia soil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Sa Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.E., Young, K.E., Schlegel, HG. et al. Conjugative plasmid mediated inducible nickel resistance in Hafnia alvei 5-5. Int Microbiol 6, 57–64 (2003). https://doi.org/10.1007/s10123-003-0101-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-003-0101-8

Keywords

Navigation