Skip to main content
Log in

Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Polymerization-induced self-assembly (PISA) is an efficient and versatile method to afford polymeric nano-objects with polymorphic morphologies. Compared to dispersion PISA syntheses based on soluble monomers, the vast majority of emulsion PISA formulations using insoluble monomers leads to kinetically-trapped spheres. Herein, we present aqueous emulsion PISA formulations generating worms and vesicles besides spheres. Two monomers with different butyl groups, n-butyl (nBHMA) and tert-butyl (tBHMA) α-hydroxymethyl acrylate, and thus possessing different water solubilities were synthesized via Baylis-Hillman reaction. Photoinitiated aqueous emulsion polymerizations of nBHMA and tBHMA employing poly(ethylene glycol) macromolecular chain transfer agents (macro-CTAs, PEG45-CTA, and PEG113-CTA) at 40 °C were systematically investigated to evaluate the effect of monomer structure and solubility on the morphology of the generated block copolymer nano-objects. Higher order morphologies including worms and vesicles were readily accessed for tBHMA, which has a higher water solubility than that of nBHMA. This study proves that plasticization of the core-forming block by water plays a key role in enhancing chain mobility required for morphological transition in emulsion PISA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, W. J.; Hong, C. Y.; Pan, C. Y. Formation of hexagonally packed hollow hoops and morphology transition in RAFT ethanol dispersion polymerization. Macromol. Rapid Commun. 2015, 36, 1428–1436.

    PubMed  Google Scholar 

  2. Gao, P.; Cao, H.; Ding, Y.; Cai, M.; Cui, Z.; Lu, X.; Cai, Y. Synthesis of hydrogen-bonded pore-switchable cylindrical vesicles via visible-light-mediated RAFT room-temperature aqueous dispersion polymerization. ACS Macro Lett.2016, 5, 1327–1331.

    CAS  Google Scholar 

  3. Li, Y.; Armes, S. P. RAFT synthesis of sterically stabilized methacrylic nanolatexes and vesicles by aqueous dispersion polymerization. Angew. Chem. Int. Ed.2010, 49, 4042–6.

    CAS  Google Scholar 

  4. Zhou, W.; Qu, Q.; Xu, Y.; An, Z. Aqueous polymerization-induced self-assembly for the synthesis of ketone-functionalized nanoobjects with low polydispersity. ACS Macro Lett.2015, 4, 495–499.

    CAS  Google Scholar 

  5. Canning, S. L.; Smith, G. N.; Armes, S. P. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules2016, 49, 1985–2001.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Warren, N. J.; Armes, S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc.2014, 136, 10174–10185.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Huo, M.; Zhang, Y.; Zeng, M.; Liu, L.; Wei, Y.; Yuan, J. Morphology evolution of polymeric assemblies regulated with fluoro-containing mesogen in polymerization-induced self-assembly. Macromolecules2017, 50, 8192–8201.

    CAS  Google Scholar 

  8. Guan, S.; Zhang, C.; Wen, W.; Qu, T.; Zheng, X.; Zhao, Y.; Chen, A. Formation of anisotropic liquid crystalline nanoparticles via polymerization-induced hierarchical self-assembly. ACS Macro Lett.2018, 7, 358–363.

    CAS  Google Scholar 

  9. Wang, X.; Shen, L.; An, Z. Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog. Polym. Sci.2018, 83, 1–27.

    Google Scholar 

  10. Wang, X.; An, Z. New insights into RAFT dispersion polymerization-induced self-assembly: From monomer library, morphological control, and stability to driving forces. Macromol. Rapid Commun.2019, 40, 1800325.

    Google Scholar 

  11. Derry, M. J.; Fielding, L. A.; Armes, S. P. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog. Polym. Sci.2016, 52, 1–18.

    CAS  Google Scholar 

  12. Shi, P.; Zhou, H.; Gao, C.; Wang, S.; Sun, P.; Zhang, W. Macro-RAFT agent mediated dispersion copolymerization: A small amount of solvophilic co-monomer leads to a great change. Polym. Chem.2015, 6, 4911–4920.

    CAS  Google Scholar 

  13. Figg, C. A.; Simula, A.; Gebre, K. A.; Tucker, B. S.; Haddleton, D. M.; Sumerlin, B. S. Polymerization-induced thermal self-assembly (PITSA). Chem. Sci.2015, 6, 1230–1236.

    CAS  PubMed  Google Scholar 

  14. Sugihara, S.; Ma’Radzi, A. H.; Ida, S.; Irie, S.; Kikukawa, T.; Maeda, Y. In situ nano-objects via RAFT aqueous dispersion polymerization of 2-methoxyethyl acrylate using poly(ethylene oxide) macromolecular chain transfer agent as steric stabilizer. Polymer2015, 76, 17–24.

    CAS  Google Scholar 

  15. Chen, S. L.; Shi, P. F.; Zhang, W. Q. In situ synthesis of block copolymer nano-assemblies by polymerization-induced self-assembly under heterogeneous condition. Chinese J. Polym. Sci.2017, 35, 455–455.

    CAS  Google Scholar 

  16. Wan, W. M.; Hong, C. Y.; Pan, C. Y. One-pot synthesis of nanomaterials via RAFT polymerization induced self-assembly and morphology transition. Chem. Commun.2009, 5883.

    Google Scholar 

  17. Wan, W. M.; Pan, C. Y. One-pot synthesis of polymeric nanomaterials via RAFT dispersion polymerization induced self-assembly and re-organization. Polym. Chem.2010, 1, 1475–1484.

    CAS  Google Scholar 

  18. Tritschler, U.; Pearce, S.; Gwyther, J.; Whittell, G. R.; Manners, I. 50th Anniversary perspective: Functional nanoparticles from the solution self-assembly of block copolymers. Macromolecules2017, 50, 3439–3463.

    CAS  Google Scholar 

  19. Zhang, W.; D’Agosto, F.; Boyron, O.; Rieger, J.; Charleux, B. Toward a better understanding of the parameters that lead to the formation of nonspherical polystyrene particles via RAFT-mediated one-pot aqueous emulsion polymerization. Macromolecules2012, 45, 4075–4084.

    CAS  Google Scholar 

  20. Zhang, B.; Lv, X.; An, Z. Modular monomers with tunable solubility: Synthesis of highly incompatible block copolymer nano-objects via RAFT aqueous dispersion polymerization. ACS Macro Lett.2017, 6, 224–228.

    CAS  Google Scholar 

  21. Wang, X.; Man, S.; Zheng, J.; An, Z. Alkyl α-hydroxymethyl acrylate monomers for aqueous dispersion polymerization-induced selfassembly. ACS Macro Lett.2018, 7, 1461–1467.

    CAS  Google Scholar 

  22. Yu, Q.; Ding, Y.; Cao, H.; Lu, X.; Cai, Y. Use of polyion complexation for polymerization-induced self-assembly in water under visible light irradiation at 25 °C. Acs Macro Lett.2015, 4, 1293–1296.

    CAS  Google Scholar 

  23. Ding, Y.; Cai, M.; Cui, Z.; Huang, L.; Wang, L.; Lu, X.; Cai, Y. Synthesis of low-dimensional polyion complex nanomaterials via polymerization-induced electrostatic self-assembly. Angew. Chem. Int. Ed.2018, 57, 1053–1056.

    CAS  Google Scholar 

  24. Cai, M.; Ding, Y.; Wang, L.; Huang, L.; Lu, X.; Cai, Y. Synthesis of one-component nanostructured polyion complexes via polymerization-induced electrostatic self-assembly. ACS Macro Lett.2018, 7, 208–212.

    CAS  Google Scholar 

  25. Chen, X.; Liu, L.; Huo, M.; Zeng, M.; Peng, L.; Feng, A.; Wang, X.; Yuan, J. Direct synthesis of polymer nanotubes by aqueous dispersion polymerization of a cyclodextrin/styrene complex. Angew. Chem. Int. Ed.2017, 56, 16541–16545.

    CAS  Google Scholar 

  26. Blanazs, A.; Madsen, J.; Battaglia, G.; Ryan, A. J.; Armes, S. P. Mechanistic insights for block copolymer morphologies: How do worms form vesicles? J. Am. Chem. Soc.2011, 133, 16581–7.

    CAS  PubMed  Google Scholar 

  27. Shen, L.; Guo, H.; Zheng, J.; Wang, X.; Yang, Y.; An, Z. RAFT Polymerization-induced self-assembly as a strategy for versatile synthesis of semifluorinated liquid-crystalline block copolymer nanoobjects. ACS Macro Lett.2018, 7, 287–292.

    CAS  Google Scholar 

  28. Chambon, P.; Blanazs, A.; Battaglia, G.; Armes, S. P. Facile synthesis of methacrylic ABC triblock copolymer vesicles by RAFT aqueous dispersion polymerization. Macromolecules2012, 45, 5081–5090.

    CAS  Google Scholar 

  29. Huo, M.; Zeng, M.; Li, D.; Liu, L.; Wei, Y.; Yuan, J. Tailoring the multicompartment nanostructures of fluoro-containing ABC triblock terpolymer assemblies via polymerization-induced self-assembly. Macromolecules2017, 50, 8212–8220.

    CAS  Google Scholar 

  30. Gao, C.; Wu, J.; Zhou, H.; Qu, Y.; Li, B.; Zhang, W. Self-assembled blends of AB/BAB block copolymers prepared through dispersion RAFT polymerization. Macromolecules2016, 49, 4490–4500.

    CAS  Google Scholar 

  31. Zhang, W. J.; Hong, C. Y.; Pan, C. Y. Fabrication of spaced concentric vesicles and polymerizations in RAFT dispersion polymerization. Macromolecules2014, 47, 1664–1671.

    CAS  Google Scholar 

  32. Gao, C.; Zhou, H.; Qu, Y.; Wang, W.; Khan, H.; Zhang, W. In situ synthesis of block copolymer nanoassemblies via polymerization-induced self-assembly in poly(ethylene glycol). Macromolecules2016, 49, 3789–3798.

    CAS  Google Scholar 

  33. Lowe, A. B. RAFT alcoholic dispersion polymerization with polymerization-induced self-assembly. Polymer2016, 106, 161–181.

    CAS  Google Scholar 

  34. Huo, M.; Li, D.; Song, G.; Zhang, J.; Wu, D.; Wei, Y.; Yuan, J. Semifluorinated methacrylates: A class of versatile monomers for polymerization-induced self-assembly. Macromol. Rapid Commun.2018, 39, 1700840.

    Google Scholar 

  35. Semsarilar, M.; Penfold, N.; Jones, E. R.; Armes, S. P. Semicrystalline diblock copolymer nano-objects prepared via RAFT alcoholic dispersion polymerization of stearyl methacrylate. Polym. Chem.2015, 6, 1751–1757.

    CAS  Google Scholar 

  36. Boott, C. E.; Gwyther, J.; Harniman, R. L.; Hayward, D. W.; Manners, I. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nat. Chem.2017, 9, 785–792.

    CAS  PubMed  Google Scholar 

  37. Zeng, M.; Huo, M.; Feng, Y.; Yuan, J. CO2-breathing polymer assemblies via one-pot sequential RAFT dispersion polymerization. Macromol. Rapid Commun.2018, 39, 1800291.

    Google Scholar 

  38. Blanazs, A.; Verber, R.; Mykhaylyk, O. O.; Ryan, A. J.; Heath, J. Z.; Douglas, C. W. I.; Armes, S. P. Sterilizable gels from thermoresponsive block copolymer worms. J. Am. Chem. Soc.2012, 134, 9741–9748.

    CAS  PubMed  Google Scholar 

  39. Yao, H.; Ning, Y.; Jesson, C. P.; He, J.; Deng, R.; Tian, W.; Armes, S. P. Using host-guest chemistry to tune the kinetics of morphological transitions undertaken by block copolymer vesicles. ACS Macro Lett.2017, 6, 1379–1385.

    CAS  Google Scholar 

  40. Deng, R.; Derry, M. J.; Mable, C. J.; Ning, Y.; Armes, S. P. Using dynamic covalent chemistry to drive morphological transitions: Controlled release of encapsulated nanoparticles from block copolymer vesicles. J. Am. Chem. Soc.2017, 139, 7616–7623.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Canning, S. L.; Neal, T. J.; Armes, S. P. pH-responsive schizophrenic diblock copolymers prepared by polymerization-induced self-assembly. Macromolecules2017, 50, 6108–6116.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Penfold, N. J. W.; Lovett, J. R.; Warren, N. J.; Verstraete, P.; Smets, J.; Armes, S. P. pH-Responsive non-ionic diblock copolymers: Protonation of a morpholine end-group induces an order-order transition. Polym. Chem.2016, 7, 79–88.

    CAS  Google Scholar 

  43. Wang, X.; Zhou, J.; Lv, X.; Zhang, B.; An, Z. Temperature-induced morphological transitions of poly(dimethylacrylamide)-poly(diacetone acrylamide) block copolymer lamellae synthesized via aqueous polymerization-induced self-assembly. Macromolecules2017, 50, 7222–7232.

    CAS  Google Scholar 

  44. Tan, J.; Zhang, X.; Liu, D.; Bai, Y.; Huang, C.; Li, X.; Zhang, L. Facile preparation of CO2-responsive polymer nano-objects via aqueous photoinitiated polymerization-induced self-assembly (photo-PISA). Macromol. Rapid Commun.2017, 38, 1600508.

    Google Scholar 

  45. Zhang, B.; Lv, X.; Zhu, A.; Zheng, J.; Yang, Y.; An, Z. Morphological stabilization of block copolymer worms using asymmetric cross-linkers during polymerization-induced self-assembly. Macromolecules2018, 51, 2776–2784.

    CAS  Google Scholar 

  46. Lv, F.; An, Z.; Wu, P. Scalable preparation of alternating block copolymer particles with inverse bicontinuous mesophases. Nat. Commun.2019, 10, 1397.

    PubMed  PubMed Central  Google Scholar 

  47. Truong, N. P.; Dussert, M. V.; Whittaker, M. R.; Quinn, J. F.; Davis, T. P. Rapid synthesis of ultrahigh molecular weight and low polydispersity polystyrene diblock copolymers by RAFT-mediated emulsion polymerization. Polym. Chem.2015, 6, 3865–3874.

    CAS  Google Scholar 

  48. Perrier, S. 50th Anniversary perspective: RAFT polymerization—A user guide. Macromolecules2017, 50, 7433–7447.

    CAS  Google Scholar 

  49. Cunningham, V. J.; Alswieleh, A. M.; Thompson, K. L.; Williams, M.; Leggett, G. J.; Armes, S. P.; Musa, O. M. Poly(glycerol monomethacrylate)-poly(benzyl methacrylate) diblock copolymer nanoparticles via RAFT emulsion polymerization: Synthesis, characterization, and interfacial activity. Macromolecules2014, 47, 5613–5623.

    CAS  Google Scholar 

  50. Rieger, J.; Zhang, W.; Stoffelbach, F.; Charleux, B. Surfactant-free RAFT emulsion polymerization using poly(N,N-dimethylacrylamide) trithiocarbonate macromolecular chain transfer agents. Macromolecules2010, 43, 6302–6310.

    CAS  Google Scholar 

  51. Chaduc, I.; Girod, M.; Antoine, R.; Charleux, B.; D’Agosto, F.; Lansalot, M. Batch emulsion polymerization mediated by poly(methacrylic acid) macro-RAFT agents: One-pot synthesis of self-stabilized particles. Macromolecules2012, 45, 5881–5893.

    CAS  Google Scholar 

  52. Chaduc, I.; Crepet, A.; Boyron, O.; Charleux, B.; D’Agosto, F.; Lansalot, M. Effect of the pH on the RAFT polymerization of acrylic acid in water. Application to the synthesis of poly(acrylic acid)-stabilized polystyrene particles by RAFT emulsion polymerization. Macromolecules2013, 46, 6013–6023.

    CAS  Google Scholar 

  53. Song, Y. K.; Truong, N. P.; Quinn, J. F.; Whittaker, M. R.; Davis, T. P. Polymerization-induced self-assembly: The effect of end group and initiator concentration on morphology of nanoparticles prepared via RAFT aqueous emulsion polymerization. ACS Macro Lett.2017, 6, 1013–1019.

    Google Scholar 

  54. Lesage de la Haye, J.; Zhang, X.; Chaduc, I.; Brunel, F.; Lansalot, M.; D’Agosto, F. The effect of hydrophile topology in RAFT-mediated polymerization-induced self-assembly. Angew. Chem. Int. Ed.2016, 55, 3739–3743.

    CAS  Google Scholar 

  55. Boissé, S.; Rieger, J.; Belal, K.; Di-Cicco, A.; Beaunier, P.; Li, M. H.; Charleux, B. Amphiphilic block copolymer nano-fibers via RAFT-mediated polymerization in aqueous dispersed system. Chem. Commun.2010, 46, 1950–1952.

    Google Scholar 

  56. Cockram, A. A.; Neal, T. J.; Derry, M. J.; Mykhaylyk, O. O.; Williams, N. S.; Murray, M. W.; Emmett, S. N.; Armes, S. P. Effect of monomer solubility on the evolution of copolymer morphology during polymerization-induced self-assembly in aqueous solution. Macromolecules2017, 50, 796–802.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tan, J.; Dai, X.; Zhang, Y.; Yu, L.; Sun, H.; Zhang, L. Photoinitiated polymerization-induced self-assembly via visible light-induced RAFT-mediated emulsion polymerization. ACS Macro Lett.2019, 8, 205–212.

    CAS  Google Scholar 

  58. Peng, C.; Joy, A. Baylis-Hillman reaction as a versatile platform for the synthesis of diverse functionalized polymers by chain and step polymerization. Macromolecules2014, 47, 1258–1268.

    CAS  Google Scholar 

  59. Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Recent advances in the Baylis-Hillman reaction and applications. Chem. Rev.2003, 103, 811–892.

    CAS  PubMed  Google Scholar 

  60. Thang, S. H.; Chong, Y. K.; Mayadunne, R. T. A.; Moad, G.; Rizzardo, E. A novel synthesis of functional dithioesters, dithiocarbamates, xanthates and trithiocarbonates. Tetrahedron Lett.1999, 40, 2435–2438.

    CAS  Google Scholar 

  61. Wang, X.; Figg, C. A.; Lv, X.; Yang, Y.; Sumerlin, B. S.; An, Z. Star architecture promoting morphological transitions during polymerization-induced self-assembly. ACS Macro Lett.2017, 6, 337–342.

    CAS  Google Scholar 

  62. Warren, N. J.; Mykhaylyk, O. O.; Mahmood, D.; Ryan, A. J.; Armes, S. P. RAFT aqueous dispersion polymerization yields poly(ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies. J. Am. Chem. Soc.2014, 136, 1023–1033.

    CAS  PubMed  Google Scholar 

  63. Dormidontova, E. E. Role of competitive PEO-water and water-water hydrogen bonding in aqueous solution PEO behavior. Macromolecules2002, 35, 987–1001.

    CAS  Google Scholar 

  64. Yeow, J.; Boyer, C. Photoinitiated polymerization-induced self-assembly (photo-PISA): New insights and opportunities. Adv. Sci.2017, 4, 1700137.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21674059).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao Wang or Ze-Sheng An.

Supporting Information

10118_2019_2303_MOESM1_ESM.pdf

Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, SK., Wang, X., Zheng, JW. et al. Effect of Butyl α-Hydroxymethyl Acrylate Monomer Structure on the Morphology Produced via Aqueous Emulsion Polymerization-induced Self-assembly. Chin J Polym Sci 38, 9–16 (2020). https://doi.org/10.1007/s10118-019-2303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2303-3

Keywords

Navigation