Skip to main content
Log in

Microscopic heterogeneity in viscoelastic properties of molecular assembled systems

  • Feature Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

An important step in understanding molecular assembled systems is to examine the structure and physical properties at various length scales and clarify the correlation between them. However, while the structures of these systems have been extensively studied from nanoscopic to macroscopic scales, their viscoelastic properties have been often limited to bulk rheological measurements. By using optical tweezers and particle tracking, we here show the local viscoelastic properties and their spatial distributions for the following systems: worm-like micelle solution, supramolecular hydrogel and lyotropic liquid crystal, which are formed by self-assembly of amphiphilic molecules in water. We found that all systems studied possessed a spatial heterogeneity in their viscoelastic properties and this was originated from the heterogeneous structures. It is interesting to note that there is the heterogeneity with the characteristic length scale of sub-micrometer or micrometer scale, thereby structures, although the systems are formed by molecules with nanometer size. The findings of these studies should lead to a better understanding of the dynamics of such systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitesides, G.M., Mathias, J.P. and Seto, C.T., Science, 1991, 254: 1312

    Article  CAS  Google Scholar 

  2. Kunitake, T., Angew. Chem. Int. Ed., 1992, 31: 709

    Article  Google Scholar 

  3. Zakin, J.L. and Bewersdorff, H.W., Rev. Chem. Eng., 1998, 14: 253

    Article  CAS  Google Scholar 

  4. Gin, D.L., Gu, W., Pindzola, B.A. and Zhou, W.J., Acc. Chem. Res., 2001, 34: 973

    Article  CAS  Google Scholar 

  5. Singh, A., Hamme, J.D.V. and Ward, O.P., Biotechnol. Adv., 2007, 25: 99

    Article  CAS  Google Scholar 

  6. Elemans, J.A.A. W., Rowan, A.E. and Nolte, R.J.M., J. Mater. Chem., 2003, 13: 2661

    Article  CAS  Google Scholar 

  7. Hashimoto, T., Bull. Chem. Soc. Jpn., 2005, 78: 1

    Article  CAS  Google Scholar 

  8. Shapiro, Y.E., Prog. Polym. Sci., 2011, 36: 1184

    Article  CAS  Google Scholar 

  9. Fukuda, H., Goto, A. and Imae, T., Langmuir, 2002, 18: 7107

    Article  CAS  Google Scholar 

  10. Pochan, D.J., Pakstis, L., Ozbas, B., Nowak, A.P. and Deming, T.J., Macromolecules, 2002, 35: 5358

    Article  CAS  Google Scholar 

  11. Adrian, M., Dubochet, J., Lepault, J. and McDowall, A.W., Nature, 1984, 308: 32

    Article  CAS  Google Scholar 

  12. Oda, R., Huc, I., Homo, J.C., Heinrich, B., Schmutz, M. and Candau, S., Langmuir, 1999, 15: 2384

    Article  CAS  Google Scholar 

  13. Waigh, T.A., Rep. Prog. Phys., 2005, 68: 685

    Article  Google Scholar 

  14. Cicuta, P. and Donald, A.M., Soft Matter, 2007, 3: 1449

    Article  CAS  Google Scholar 

  15. Kimura, Y., J. Phys. Soc. Jpn., 2009, 78: 041005

    Article  Google Scholar 

  16. Tseng, Y. and Wirtz, D., Biophys. J., 2001, 81: 1643

    Article  CAS  Google Scholar 

  17. Lopez-Diaz, D. and Castillo, R., Soft Matter, 2011, 7: 5926

    Article  CAS  Google Scholar 

  18. Hori, K., Penaloza Jr., D.P., Shundo, A. and Tanaka, K., Soft Matter, 2012, 8: 7361

    Article  CAS  Google Scholar 

  19. Shundo, A., Mizuguchi, K., Miyamoto, M., Goto, M. and Tanaka, K., Chem. Commun., 2011, 47: 8844

    Article  CAS  Google Scholar 

  20. Penaloza Jr., D.P., Hori, K., Shundo, A. and Tanaka, K., Phys. Chem. Chem. Phys., 2012, 14: 5247

    Article  CAS  Google Scholar 

  21. Hough, L.A. and Ou-Yang, H.D., J. Nanopart. Res., 1999, 1: 495

    Article  Google Scholar 

  22. Buchanan, M., Atakhorrami, M., Palierne, J.F., MacKintosh, F.C. and Schmidt, C.F., Phys. Rev. E, 2005, 72: 011504

    Article  CAS  Google Scholar 

  23. Kotlarchyk, M.A., Botvinick, E.L. and Putnam, A.J., J. Phys., Condens. Matter, 2010, 22: 194121

    Article  CAS  Google Scholar 

  24. Ou-Yang, H.D., in “Colloid-polymer interactions: from fundamentals to practice”, ed. by Farinato, R.S. and Dubin, P.L., John Wiley & Sons, New York, 1999, p. 385

    Google Scholar 

  25. Yamaguchi, N., Chae, B.S., Zhang, L., Kiick, K.L. and Furst, E.M., Biomacromolecules, 2005, 6: 1931

    Article  CAS  Google Scholar 

  26. Latinovic, O., Hough, L.A. and Ou-Yang, H.D., J. Biomech., 2010, 43: 500

    Article  Google Scholar 

  27. Finer, J.T., Simmons, R.M. and Spudich, J.A., Nature, 1994, 368: 113

    Article  CAS  Google Scholar 

  28. Brinker, C.J., Lu, Y., Sellinger, A. and Fan, H., Adv. Mater., 1999, 11: 579

    Article  CAS  Google Scholar 

  29. Cates, M.E. and Candau, S.J., J. Phys. Condens. Matter, 1990, 2: 6869

    Article  CAS  Google Scholar 

  30. Dasgupta, B.R., Tee, S.Y., Crocker, J.C., Frisken, B.J. and Weitz, D.A., Phys. Rev. E, 2002, 65: 051505

    Article  Google Scholar 

  31. Velegol, D. and Lanni, F., Biophys. J., 2001, 81: 1786

    Article  CAS  Google Scholar 

  32. Nemoto, N., Kuwahara, M., Yao, M.L. and Osaki, K., Langmuir, 1995, 11: 30

    Article  CAS  Google Scholar 

  33. Lorber, A., Anal. Chem., 1986, 58: 1167

    Article  CAS  Google Scholar 

  34. Turner, M.S. and Cates, M.E., Langmuir, 1991, 7: 1590

    Article  CAS  Google Scholar 

  35. Shikata, T., Hirata H. and Kotaka, T., Langmuir, 1988, 4: 354

    Article  CAS  Google Scholar 

  36. Shikata, T., Hirata H. and Kotaka, T., Langmuir, 1989, 5: 398

    Article  CAS  Google Scholar 

  37. Koda, D., Maruyama, T., Minakuchi, N., Nakashima, K. and Goto, M., Chem. Commun., 2010, 46: 979

    Article  CAS  Google Scholar 

  38. Shirakawa, M., Fujita, N. and Shinkai, S., J. Am. Chem. Soc., 2005, 127: 4164

    Article  CAS  Google Scholar 

  39. Huang, X., Raghavan, S.R., Terech, P. and Weiss, R.G., J. Am. Chem. Soc., 2006, 128: 15341

    Article  CAS  Google Scholar 

  40. Parikh, A.N., Allara, D.L., Azouz, I.B. and Rondelez, F., J. Phys. Chem., 1994, 98: 7577

    Article  CAS  Google Scholar 

  41. Valenti, L.E., Paci, M.B., DePauli, C.P. and Giacomelli, C.E., Anal. Biochem., 2011, 410: 118

    Article  CAS  Google Scholar 

  42. Yamada, N., Ariga, K., Naito, M., Matsubara, K. and Koyama, E., J. Am. Chem. Soc., 1998, 120: 12192

    Article  CAS  Google Scholar 

  43. Kiyonaka, S., Sada, K., Yoshimura, I., Shinkai, S., Kato, N. and Hamachi, I., Nature Mater., 2004, 3: 58

    Article  CAS  Google Scholar 

  44. Mewis, J. and Moldenaers, P., Curr. Opin. Colloid Interface Sci., 1996, 1: 466

    Article  CAS  Google Scholar 

  45. Bouwstra, J.A., Jousma, H., van der Meulen, M.M., Vijverberg, C.C., Gooris, G.S., Spies, F. and Junginger, H.E., Colloid Polym. Sci., 1989, 267: 531

    Article  CAS  Google Scholar 

  46. Mason, T.G., Ganesan, K., van Zanten, J.H., Wirtz, D. and Kuo, S.C., Phys. Rev. Lett., 1997, 79: 3282

    Article  CAS  Google Scholar 

  47. Ott, A., Bouchaud, J.P., Langevin, D. and Urbach, W., Phys. Rev. Lett., 1990, 65: 2201

    Article  CAS  Google Scholar 

  48. Burgis, M., Schaller, V., Glassl, M., Kaiser, B., Kohler, W., Krekhov, A. and Zimmermann, W., New J. Phys., 2011, 13: 043031

    Article  Google Scholar 

  49. Palmer, A., Mason, T.G., Xu, J., Kuo, S.C. and Wirtz, D., Biophys. J., 1999, 76: 1063

    Article  CAS  Google Scholar 

  50. Edward, J.T., J. Chem. Educ., 1970, 47: 261

    Article  CAS  Google Scholar 

  51. Yamamoto, N., Ichikawa, M. and Kimura, Y., Phys. Rev. E, 2010, 82: 021506

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Tanaka.

Additional information

This work was partly supported by Grant-in-Aid for Scientific Research (B) (No. 24350061) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shundo, A., Penaloza, D.P. & Tanaka, K. Microscopic heterogeneity in viscoelastic properties of molecular assembled systems. Chin J Polym Sci 31, 1–11 (2013). https://doi.org/10.1007/s10118-013-1193-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-013-1193-z

Keywords

Navigation