Skip to main content

Advertisement

Log in

Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia

  • Original Article
  • Published:
Regional Environmental Change Aims and scope Submit manuscript

Abstract

Climate change is expected to cause shifts in species distributions worldwide, threatening their viability due to range reductions and altering their representation in protected areas. Biodiversity hotspots might be particularly vulnerable to climate change because they hold large numbers of species with small ranges which could contract even further as species track their optimal habitat. In this study, we assessed the extent to which climate change could cause distribution shifts in threatened and range-restricted birds in Colombia, a megadiverse region that includes the Tropical Andes and Tumbes-Choco-Magdalena hotspots. To evaluate how climate change might influence species in this region, we developed species distribution models using MAXENT. Species are projected to lose on average between 33 and 43 % of their total range under future climate, and up to 18 species may lose their climatically suitable range completely. Species whose suitable climate is projected to disappear occur in mountainous regions, particularly isolated ranges such as the Sierra Nevada de Santa Marta. Depending on the representation target considered, between 46 and 96 % of the species evaluated may be adequately represented in protected areas. In the future, the fraction of species potentially adequately represented is projected to decline to 30–95 %. Additional protected areas may help to retain representativeness of protected areas, but monitoring of species projected to have the largest potential declines in range size will be necessary to assess the need of implementing active management strategies to counteract the effects of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akçakaya HR, Butchart SHM, Mace GM, Stuart SN, Hilton-Taylor C (2006) Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Global Chang Biol 12(11):2037–2043

    Article  Google Scholar 

  • Anciães M, Peterson AT (2006) Climate change effects on Neotropical manakin diversity based on ecological niche modeling. Condor 108(4):778–791

    Article  Google Scholar 

  • Anderson RP, Peterson AT, Gómez-Laverde M (2002) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98(1):3–16

    Article  Google Scholar 

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modelling species distributions under climate change. Glob Ecol Biogeogr 16(6):743–753

    Article  Google Scholar 

  • Araújo MB, Cabeza M, Thuiller W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Chang Biol 10(9):1618–1626

    Article  Google Scholar 

  • Araújo MB, Whittaker RJ, Ladle RJ, Erhard M (2005) Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14(6):529–538

    Article  Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14(5):484–492

    Article  Google Scholar 

  • Balanya J, Oller JM, Huey RB, Gilchrist GW, Serra L (2006) Global genetic change tracks global climate warming in Drosophila subobscura. Science 313(5794):1773–1775

    Article  CAS  Google Scholar 

  • Beaumont LJ, Pitman AJ, Poulsen M, Hughes L (2007) Where will species go? Incorporating new advances in climate modelling into projections of species distributions. Glob Chang Biol 13(7):1368–1385

    Article  Google Scholar 

  • BirdLife International (2008) The BirdLife checklist of the birds of the world, with conservation status and taxonomic sources. Version 1. BirdLife International. http://www.birdlife.org/datazone/species/downloads/BirdLife_Checklist_Version_1.zip. Accessed 2 August 2008

  • Brommer JE, Rattiste K, Wilson AJ (2008) Exploring plasticity in the wild: laying date-temperature reaction norms in the common gull Larus canus. Proc R Soc B Biol Sci 275(1635):687–693

    Article  Google Scholar 

  • Brooks T, De Silva N, Foster M, Hoffmann M, Knox D, Langhammer P, Pilgrim J, Ratledge N, Sweeting A (2009) Biodiversity Hotspots. Conservation International. http://www.biodiversityhotspots.org. Accessed 3 March 2009

  • Byars SG, Papst W, Hoffmann AA (2007) Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. Evolution 61(12):2925–2941

    Article  Google Scholar 

  • Cadena CD, Loiselle BA (2007) Limits to elevational distributions in two species of emberizine finches: disentangling the role of interspecific competition, autoecology, and geographic variation in the environment. Ecography 30(4):491–504

    Google Scholar 

  • Chen I-C, Shiu H-J, Benedick S, Holloway JD, Chey VK, Barlow HS, Hill JK, Thomas CD (2009) Elevation increases in moth assemblages over 42 years on a tropical mountain. Proc Nat Acad Sci. doi:10.1073/pnas.0809320106

    Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026

    Article  CAS  Google Scholar 

  • Coope GR (2004) Several million years of stability among insect species because of, or in spite of, Ice Age climatic instability? Philos Trans R Soc Lond Ser B Biol Sci 359(1442):209–214

    Article  CAS  Google Scholar 

  • Cordellier M, Pfenninger M (2009) Inferring the past to predict the future: climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata, Basommatophora). Mol Ecol 18(3):534–544

    Article  CAS  Google Scholar 

  • Dávalos LM, Bejarano AC, Hall MA, Correa HL, Corthals A, Espejo OJ (2011) Forests and drugs: coca-driven deforestation in tropical biodiversity hotspots. Environ Sci Technol 45(4):1219–1227

    Article  Google Scholar 

  • Davis AJ, Jenkinson LS, Lawton JH, Shorrocks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391(6669):783–786

    Article  CAS  Google Scholar 

  • Dudley N (2008) Guidelines for applying protected area management categories. Gland, Switzerland

    Book  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2):129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1(4):330–342

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17(1):43–57

    Article  Google Scholar 

  • Eva HD, de Miranda EE, Di Bella CM, Gond V, Huber O, Sgrenzaroli M, Jones S, Coutinho A, Dorado A, Guimarães M, Elvidge C, Achard F, Belward AS, Bartholomé E, Baraldi A, De Grandi G, Vogt P, Fritz S, Hartley A (2002) A vegetation map of South America. Publications of the European Commission, Luxembourg

    Google Scholar 

  • Forero-Medina G, Joppa L, Pimm SL (2011) Constraints to species’ elevational range shifts as climate changes. Conserv Biol 25(1):163–171

    Article  Google Scholar 

  • Franco P, Saavedra-Rodriguez CA, Kattan GH (2007) Bird species diversity captured by protected areas in the Andes of Colombia: a gap analysis. Oryx 41(1):57–63

    Article  Google Scholar 

  • Gaston KJ (1994) Rarity. Chapman and Hall, London

    Book  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21(3):394–407

    Article  Google Scholar 

  • Graham CH, Silva N, Velásquez-Tibatá J (2010) Evaluating the potential causes of range limits of Andean birds. J Biogeogr 37(10):1863–1875

    Google Scholar 

  • Graham CH, Loiselle BA, Velásquez-Tibatá J, Cuesta F (2011) Species distribution modeling and the challenge of predicting future distributions. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical Andes. IAI-SCOPE, São José dos Campos, Brazil, pp 295–310

    Google Scholar 

  • Green RE, Collingham YC, Willis SG, Gregory RD, Smith KW, Huntley B (2008) Performance of climate envelope models in retrodicting recent changes in bird population size from observed climatic change. Biol Lett 4(5):599–602

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2–3):147–186

    Article  Google Scholar 

  • Hannah L, Midgley G, Andelman S, Araújo M, Hughes G, Martinez-Meyer E, Pearson R, Williams P (2007) Protected area needs in a changing climate. Front Ecol Environ 5(3):131–138

    Article  Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thuiller W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30(6):751–777

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

    Article  Google Scholar 

  • Hilty SL, Brown B (1986) A guide to the birds of Colombia. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Hilty SL, Meyer de Schauensee R (2003) Birds of Venezuela, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Hoffmann D, Oetting I, Alberto-Arnillas C, Ulloa R (2011) Climate change and protected areas in the tropical Andes. In: Herzog SK, Martínez R, Jørgensen PM, Tiessen H (eds) Climate change and biodiversity in the tropical Andes. IAI-SCOPE, São José dos Campos, Brazil, pp 311–325

    Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2001) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

  • Huntley B, Webb T III (1989) Migration: species’ response to climatic variation cased by changes in the earth’s orbit. J Biogeogr 16(1):5–19

    Article  Google Scholar 

  • IDEAM (2010) Informe Anual sobre el Estado del Medio Ambiente y los Recursos Naturales Renovables en Colombia—Bosques 2009. Instituto de Hidrologia, Meteorología y Estudios Ambientales, Bogotá DC

  • IUCN (2001) IUCN red list categories and criteria, 3.1 edn. IUCN–The World Conservation Union, Gland, Switzerland

  • IUCN SPSC (2010) Guidelines for using the IUCN red list categories and criteria. Version 8.1

  • Iverson LR, Prasad AM, Matthews SN, Peters M (2008) Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For Ecol Manag 254(3):390–406

    Article  Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12(4):334–350

    Article  Google Scholar 

  • Keith DA, Akcakaya HR, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, Regan HM, Araújo MB, Rebelo TG (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4(5):560–563

    Article  Google Scholar 

  • Klein C, Wilson K, Watts M, Stein J, Berry S, Carwardine J, Smith MS, Mackey B, Possingham H (2009) Incorporating ecological and evolutionary processes into continental-scale conservation planning. Ecol Appl 19(1):206–217

    Article  Google Scholar 

  • Latimer AM, Banerjee S, Sang H, Mosher ES, Silander JA (2009) Hierarchical models facilitate spatial analysis of large data sets: a case study on invasive plant species in the northeastern United States. Ecol Lett 12(2):144–154

    Article  CAS  Google Scholar 

  • Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD (2008) Climate change and the future of California’s endemic flora. PLoS One 3(6):e2502

    Article  Google Scholar 

  • Loiselle BA, Graham CH, Goerck JM, Ribeiro MC (2010) Assessing the impact of deforestation and climate change on the range size and environmental nice of bird species in the Atlantic forests, Brazil. J Biogeogr 37(7):1288–1301

    Article  Google Scholar 

  • Malcolm JR, Liu CR, Neilson RP, Hansen L, Hannah L (2006) Global warming and extinctions of endemic species from biodiversity hotspots. Conserv Biol 20(2):538–548

    Article  Google Scholar 

  • Manne LL, Pimm SL (2001) Beyond eight forms of rarity: which species are threatened and which will be next? Anim Conserv 4:221–229

    Article  Google Scholar 

  • McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. University of Massachusetts, Amherst

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403(6772):853–858

    Article  CAS  Google Scholar 

  • Nakicenovic N, Swart R (eds) (2000) Special report on emissions scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Olson DM, Dinerstein E (1998) The global 200: A representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv Biol 12(3):502–515

    Article  Google Scholar 

  • Paynter RA (1982) Ornithological gazetteer of Venezuela. Museum of Comparative Zoology. Harvard University, Cambridge, MA

    Book  Google Scholar 

  • Paynter RA (1997) Ornithological gazetteer of Colombia. Museum of Comparative Zoology. Harvard University, Cambridge, MA

    Book  Google Scholar 

  • Paynter RA, Traylor MA (1977) Ornithological gazetteer of Ecuador. Museum of Comparative Zoology. Harvard University, Cambridge, MA

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12(5):361–371

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34(1):102–117

    Article  Google Scholar 

  • Peh KSH (2007) Potential effects of climate change of elevational distributions of tropical birds in Southeast Asia. Condor 109(2):437–441

    Article  Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sanchez-Cordero V, Soberon J, Buddemeier RH, Stockwell DRB (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416(6881):626–629

    Article  CAS  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2):161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3–4):231–259

    Article  Google Scholar 

  • Phillips SJ, Williams P, Midgley G, Archer A (2008) Optimizing dispersal corridors for the cape proteaceae using network flow. Ecol Appl 18(5):1200–1211

    Article  Google Scholar 

  • Raxworthy CJ, Pearson RG, Rabibisoa N, Rakotondrazafy AM, Ramanamanjato JB, Raselimanana AP, Wu S, Nussbaum RA, Stone DA (2008) Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Chang Biol 14(8):1703–1720

    Article  Google Scholar 

  • Remsen JV, Cardiff SW (1990) Patterns of elevational and latitudinal distribution, including a niche switch in some guans (Cracidae) of the Andes. Condor 92(4):970–981

    Article  Google Scholar 

  • Renjifo LM, Kattan GH, Kattan GH, López-Lánus B (eds) (2002) Libro rojo de aves de Colombia. Instituto de Investigaciones Biologicas Alexander von Humboldt, Bogotá DC

    Google Scholar 

  • Ridgely RS, Greenfield PJ (2001) The birds of Ecuador. Comstock Pub, Ithaca

    Google Scholar 

  • Ridgely RS, Tudor G, Brown WL (1989) The birds of South America, vol 1. University of Texas Press, Austin

    Google Scholar 

  • Ridgely RS, Tudor G, Brown WL (1994) The birds of South America, vol 2. Austin, TX

    Google Scholar 

  • Seimon TA, Seimon A, Daszak P, Halloy SRP, Schloegel LM, Aguilar CA, Sowell P, Hyatt AD, Konecky B, Simmons EJ (2007) Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob Chang Biol 13(1):288–299

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman and Company, New York

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

  • Stattersfield AJ, Crosby MJ, Long AJ, Wege DC (1998) Endemic bird areas of the world: priorities for biodiversity conservation. BirdLife International, Cambridge

    Google Scholar 

  • Stotz DF, Fitzpatrick JW, Parker TA III, Moskovits DK (1996) Neotropical birds: ecology and conservation. University of Chicago Press, Chicago

    Google Scholar 

  • Stralberg D, Jongsomjit D, Howell CA, Snyder MA, Alexander JD, Wiens JA, Root TL (2009) Re-shuffling of species with climate disruption: a no-analog future for California birds? PLoS One 4(9):e6825

    Article  Google Scholar 

  • Terborgh J, Weske JS (1975) Role of competition in distribution of Andean birds. Ecology 56(3):562–576

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427(6970):145–148

    Article  CAS  Google Scholar 

  • Thuiller W, Broennimann O, Hughes G, Alkemade JRM, Midgley GF, Corsi F (2006) Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Glob Chang Biol 12(3):424–440

    Article  Google Scholar 

  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgely GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9(3–4):137–152

    Article  Google Scholar 

  • Vásquez VH, Serrano MA (2009) Las áreas naturales protegidas de Colombia. Conservación Internacional, Bogotá

    Google Scholar 

  • Williams P, Hannah L, Andelman S, Midgley G, Araújo M, Hughes G, Manne L, Martinez-Meyer E, Pearson R (2005) Planning for climate change: identifying minimum-dispersal corridors for the Cape proteaceae. Conserv Biol 19(4):1063–1074

    Article  Google Scholar 

  • Young BF, Franke I, Hernandez PA, Herzog SK, Paniagua L, Tovar C, Valqui T (2009) Using spatial models to predict areas of endemism and gaps in the protection of Andean slope birds. Auk 126(3):554–565

    Article  Google Scholar 

Download references

Acknowledgments

This project was possible because of several bioinformatics initiatives to make Colombian bird data accessible, as well as individual field researchers who shared their observations. We thank Project Biomap staff and museum curators: J. C. Verhelst, D. Arzuza, A. Morales, C. Bohórquez, N. Cleere, S. de la Zerda, L. Rosselli, D. Caro, R. Prys–Jones, J. Stewart, A. Espinal, D. Estepa, and J. V. Rodriguez. W. Naranjo helped with Dataves on behalf of RNOA. D. Caro provided data from Fundación ProAves. A. Castaño, A. Cuervo, A. López, D. Calderón, E. Briceño, F. Quiñonez, G. Chávez, J. Avendaño, J. Ochoa, J.P. López, J. Ruiz, M. Moreno, O. Cortés, P. Flórez, R. Sedano, S. Córdoba, S. Ocampo, T. Donegan, and W. Naranjo contributed unpublished records and/or lent their expertise to evaluate the performance of earlier distribution models. The manuscript benefited from comments by R. Akçakaya, L. Brown, L. Dávalos, A. Etter, J. Knowlton, M. Mark, L. Renjifo, S. Munch and greatly improved thanks to suggestions by two anonymous reviewers. S. Phillips assisted with MAXENT, R. Hijmans with Worldclim, and N. Urbina provided an updated shapefile of protected areas of Colombia. Financial support was provided by NASA grants NNG05GB37 to C.H.G and NNX08AU26H to J.V.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Velásquez-Tibatá.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10113_2012_329_MOESM1_ESM.xlsx

Appendix 1. Landscape statistics and protection for threatened and range-restricted birds of Colombia under climate change. (XLSX 108 kb)

10113_2012_329_MOESM2_ESM.docx

Appendix 2. Comparison among bioclimatic variables from IPCC’s third and fourth assessment reports for Colombia. (DOCX 1437 kb)

10113_2012_329_MOESM3_ESM.docx

Appendix 3. General linear model analyses of IUCN category and projected change in range size relationship. (DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velásquez-Tibatá, J., Salaman, P. & Graham, C.H. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg Environ Change 13, 235–248 (2013). https://doi.org/10.1007/s10113-012-0329-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10113-012-0329-y

Keywords

Navigation