Skip to main content
Log in

On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We analyze sequences generated by interior point methods (IPMs) in convex and nonconvex settings. We prove that moving the primal feasibility at the same rate as the barrier parameter \(\mu \) ensures the Lagrange multiplier sequence remains bounded, provided the limit point of the primal sequence has a Lagrange multiplier. This result does not require constraint qualifications. We also guarantee the IPM finds a solution satisfying strict complementarity if one exists. On the other hand, if the primal feasibility is reduced too slowly, then the algorithm converges to a point of minimal complementarity; if the primal feasibility is reduced too quickly and the set of Lagrange multipliers is unbounded, then the norm of the Lagrange multiplier tends to infinity. Our theory has important implications for the design of IPMs. Specifically, we show that IPOPT, an algorithm that does not carefully control primal feasibility has practical issues with the dual multipliers values growing to unnecessarily large values. Conversely, the one-phase IPM of Hinder and Ye (A one-phase interior point method for nonconvex optimization, 2018. arXiv:1801.03072), an algorithm that controls primal feasibility as our theory suggests, has no such issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A popular misconception is that when the constraints of a optimization problem are defined by ‘physics’, MFCQ always holds. This is a nice counter-example.

References

  1. Altman, A., Gondzio, J.: Regularized symmetric indefinite systems in interior point methods for linear and quadratic optimization. Optim. Methods Softw. 11(1–4), 275–302 (1999)

    Article  MathSciNet  Google Scholar 

  2. Andersen, E.D., Andersen, K.D.: The mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm. High Perform. Optim. 33, 197–232 (2000)

    Article  MathSciNet  Google Scholar 

  3. Andersen, E.D., Ye, Y.: A computational study of the homogeneous algorithm for large-scale convex optimization. Comput. Optim. Appl. 10(3), 243–269 (1998)

    Article  MathSciNet  Google Scholar 

  4. Andersen, E.D., Ye, Y.: On a homogeneous algorithm for the monotone complementarity problem. Math. Program. 84(2), 375–399 (1999)

    Article  MathSciNet  Google Scholar 

  5. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: Two new weak constraint qualifications and applications. SIAM J. Optim. 22, 1109–1135 (2012a)

    Article  MathSciNet  Google Scholar 

  6. Andreani, R., Haeser, G., Schuverdt, M.L., Silva, P.J.S.: A relaxed constant positive linear dependence constraint qualification and applications. Math. Program. 135, 255–273 (2012b)

    Article  MathSciNet  Google Scholar 

  7. Andreani, R., Martínez, J.M., Ramos, A., Silva, P.J.S.: A cone-continuity constraint qualification and algorithmic consequences. SIAM J. Optim. 26(1), 96–110 (2016)

    Article  MathSciNet  Google Scholar 

  8. Andreani, R., Martínez, J.M., Ramos, A., Silva, P.J.S.: Strict constraint qualifications and sequential optimality conditions for constrained optimization. Math. Oper. Res. (2018). https://doi.org/10.1287/moor.2017.0879

    Article  MathSciNet  MATH  Google Scholar 

  9. Andreani, R., Martínez, J.M., Svaiter, B.F.: A new sequential optimality condition for constrained optimization and algorithmic consequences. SIAM J. Optim. 20(6), 3533–3554 (2010)

    Article  MathSciNet  Google Scholar 

  10. Andreani, R., Haeser, G., Martínez, J.M.: On sequential optimality conditions for smooth constrained optimization. Optimization 60(5), 627–641 (2011)

    Article  MathSciNet  Google Scholar 

  11. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Practical methods of optimization: theory and algorithms. Wiley, Hoboken, New Jersey (2006)

    MATH  Google Scholar 

  12. Benson, H.Y., Shanno, D.F., Vanderbei, R.J.: Interior-point methods for nonconvex nonlinear programming: Complementarity constraints. Operations Res. Financ. Eng. pp. 1–20 (2002)

  13. Burgschweiger, J., Gnädig, B., Steinbach, M.C.: Optimization models for operative planning in drinking water networks. Optim. Eng. 10(1), 43–73 (2009)

    Article  MathSciNet  Google Scholar 

  14. Byrd, R.H., Gilbert, J.C., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1), 149–185 (2000)

    Article  MathSciNet  Google Scholar 

  15. Chen, L., Goldfarb, D.: Interior-point \(\ell _2\)-penalty methods for nonlinear programming with strong global convergence properties. Math. Program. 108(1), 1–36 (2006)

    Article  MathSciNet  Google Scholar 

  16. Debreu, G.: Definite and semidefinite quadratic forms. Econometrica (pre-1986) 20(2), 295 (1952)

    Article  MathSciNet  Google Scholar 

  17. Dunning, I., Huchette, J., Lubin, M.: Jump: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017)

    Article  MathSciNet  Google Scholar 

  18. El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the newton interior-point method for nonlinear programming. J. Optim. Theory Appl. 89(3), 507–541 (1996)

    Article  MathSciNet  Google Scholar 

  19. Gauvin, J.: A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming. Math. Program. 12, 136–138 (1977)

    Article  MathSciNet  Google Scholar 

  20. Giorgi, G., Jiménez, B., Novo, V.: Approximate Karush-Kuhn-Tucker condition in multiobjective optimization. J. Optim. Theory Appl. 171(1), 70–89 (2016)

    Article  MathSciNet  Google Scholar 

  21. Gondzio, J.: Matrix-free interior point method. Comput. Optim. Appl. 51(2), 457–480 (2012)

    Article  MathSciNet  Google Scholar 

  22. Güler, O., Ye, Y.: Convergence behavior of interior-point algorithms. Math. Program. 60(1), 215–228 (1993)

    Article  MathSciNet  Google Scholar 

  23. Haeser, G.: A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Comput. Optim. Appl. 70(2), 615–639 (2018)

    Article  MathSciNet  Google Scholar 

  24. Haeser, G., Schuverdt, M.L.: On approximate KKT condition and its extension to continuous variational inequalities. J. Optim. Theory Appl. 149(3), 528–539 (2011)

    Article  MathSciNet  Google Scholar 

  25. Hager, W.W., Mico-Umutesi, D.: Error estimation in nonlinear optimization. J. Global Optim. 59, 327–341 (2014)

    Article  MathSciNet  Google Scholar 

  26. Hinder, O., Ye, Y.: A one-phase interior point method for nonconvex optimization (2018) . arXiv preprint arXiv:1801.03072

  27. Jeyakumar, V., Lee, G.M., Dinh, N.: New sequential lagrange multiplier conditions characterizing optimality without constraint qualification for convex programs. SIAM J. Optim. 14(2), 534–547 (2003). https://doi.org/10.1137/S1052623402417699

    Article  MathSciNet  MATH  Google Scholar 

  28. Leyffer, S., López-Calva, G., Nocedal, J.: Interior methods for mathematical programs with complementarity constraints. SIAM J. Optim. 17(1), 52–77 (2006)

    Article  MathSciNet  Google Scholar 

  29. Lustig, I.J.: Feasibility issues in a primal-dual interior-point method for linear programming. Math. Program. 49(1–3), 145–162 (1990)

    Article  MathSciNet  Google Scholar 

  30. Lustig, I.J., Marsten, R.E., Shanno, D.F.: Interior point methods for linear programming: computational state of the art. ORSA J. Comput. 6(1), 1–14 (1994)

    Article  MathSciNet  Google Scholar 

  31. McLinden, L.: An analogue of Moreau’s proximation theorem, with application to the nonlinear complementarity problem. Pac. J. Math. 88(1), 101–161 (1980)

    Article  MathSciNet  Google Scholar 

  32. Megiddo, N.: Pathways to the optimal set in linear programming. In: Progress in Mathematical Programming. Springer, pp. 131–158 (1989)

  33. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4), 575–601 (1992)

    Article  MathSciNet  Google Scholar 

  34. Mizuno, S., Todd, M.J., Ye, Y.: A surface of analytic centers and primal-dual infeasible-interior-point algorithms for linear programming. Math. Oper. Res. 20(1), 135–162 (1995)

    Article  MathSciNet  Google Scholar 

  35. Nesterov, Y., Polyak, B.T.: Cubic regularization of newton method and its global performance. Math. Program. 108(1), 177–205 (2006)

    Article  MathSciNet  Google Scholar 

  36. Nocedal, J., Wright, S.: Numer. Optim. Springer, Berlin (2006)

    Google Scholar 

  37. Qi, L., Wei, Z.: On the constant positive linear dependence conditions and its application to SQP methods. SIAM J. Optim. 10, 963–981 (2000)

    Article  MathSciNet  Google Scholar 

  38. Rockafellar, R.T., Wets R, J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  39. Sonnevend, G.: An “analytical centre” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. In: System Modelling And Optimization. Springer, pp. 866–875 (1986)

  40. Vicente, L.N., Wright, S.J.: Local convergence of a primal-dual method for degenerate nonlinear programming. Comput. Optim. Appl. 22(3), 311–328 (2002)

    Article  MathSciNet  Google Scholar 

  41. Wächter, A., Biegler, L.T.: Line search filter methods for nonlinear programming: motivation and global convergence. SIAM J. Optim. 16(1), 1–31 (2005)

    Article  MathSciNet  Google Scholar 

  42. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  Google Scholar 

  43. Ye, Y., Anstreicher, K.: On quadratic and \({O}(\sqrt{n}{L})\) convergence of a predictor-corrector algorithm for LCP. Math. Program. 62(1–3), 537–551 (1993)

    Article  MathSciNet  Google Scholar 

  44. Ye, Y., Todd, M.J., Mizuno, S.: An \({O}(\sqrt{n}{L})\)-iteration homogeneous and self-dual linear programming algorithm. Math. Oper. Res. 19(1), 53–67 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their helpful feedback, and Michael Saunders for carefully proof reading the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Hinder.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Gabriel Haeser was supported by the São Paulo Research Foundation (FAPESP Grants 2013/05475-7 and 2016/02092-8) and the Brazilian National Council for Scientific and Technological Development (CNPq). Oliver Hinder was supported by the PACCAR INC stanford graduate fellowship.

Experimental details

Experimental details

The code for the experiments can be found at https://github.com/ohinder/Lagrange-multipliers-behavior.

1.1 Solvers

One-phase solver. For the well-behaved interior point solver, given a problem of the form

$$\begin{aligned} \text{ minimize }&f(x) \\ \text{ subject } \text{ to }&c(x) = 0 \\&x_{L} \le x \le x_{U}, \end{aligned}$$

we can re-write the constraints as

$$\begin{aligned} \text{ minimize }&f(x) \\ \text{ subject } \text{ to }&c(x) \le 0 \\ -&c(x) \le 0 \\&x_{L} \le x \le x_{U}. \end{aligned}$$

This gives a problem of the form

$$\begin{aligned} \text{ minimize }&f(x) \\ \text{ subject } \text{ to }&a(x) + s = 0 \\&s \ge 0, \end{aligned}$$

which we can pass to the one-phase solver.

The terms in Fig. 2 and Table 1 are given as follows:

  • The infinity norm of the primal residual is given by \(\Vert a(x) + s \Vert _{\infty }\).

  • The infinity norm of the dual residual is measured by \(\Vert \nabla {\mathcal {L}}(x,y) \Vert _{\infty }\).

  • The infinity norm of complementarity is given by \(\max _i s_i y_i\).

  • We measure strict complementarity by \(\min _i s_i + y_i\).

The optimality termination criterion of the one-phase IPM is

$$\begin{aligned} \max \left\{ \frac{100}{\max \{ \Vert y \Vert _{\infty }, 100 \}} \max \{ \Vert \nabla _{x} {\mathcal {L}}(x,y) \Vert _{\infty }, \Vert Sy \Vert _{\infty } \}, \Vert a(x) + s \Vert _{\infty } \right\} \le 10^{-6}. \end{aligned}$$

For more etails on the one-phase IPM see the paper [26] and code (https://github.com/ohinder/OnePhase.jl). The linear solver used was the default Julia Cholesky factorization (SuiteSparse).

Table 2 Solver options
Table 3 NETLIB problems where a solver failed
Table 4 Problems in NETLIB collection with a strict relative interior

IPOPT. We use IPOPT 3.12.4 with the linear solver MUMPS. Given any generic nonlinear problem, IPOPT rewrites it in the form (by adding slacks to inequalities, see [42])

$$\begin{aligned} \text{ minimize }&f(x) \\ \text{ subject } \text{ to }&c(x) = 0 \\&x_{L} \le x \le x_{U}. \end{aligned}$$

For practical reasons related to the interface we use [17], we do this reformulation ourselves. We then measure

  • Primal feasibility by \(\Vert c(x) \Vert _{\infty }\).

  • Dual feasibility by \(\Vert \nabla f(x) + \nabla c(x)^T \lambda - z_{L} + z_{U} \Vert _{\infty }\), where \(z_{L}\) and \(z_{U}\) are the dual multipliers corresponding to the constraint \(x \ge l\) and \(x \le u\) respectively (same notation as in [42]).

  • Complementarity is given by \(\max \{ \max _i((z_{L})_i (x_i - l_i)), \max _i( (z_{U})_i (x_i - u_i)) \}\).

  • We measure strict complementarity by \(\min \{ \min _i((z_{L})_i (x_i - l_i)), \min _i((z_{U})_i (x_i - l_i)) \}\).

The details of this computation can be found in the file ‘src/shared.jl’ in the function ‘add_solver_results!’.

The options chosen for the solvers are given in Table 2. We turn off the acceptable termination criterion for IPOPT to try to make the termination criterion of the algorithms as similar as possible.

1.2 NETLIB LP test details

The linear programs in the NETLIB linear programming collection come in the form \(\min {c^T x}\) s.t. \(Ax = b\), \(l \le x \le u\). Table 3 shows which solver failed on which problem.

Table 4 shows when there is a feasible solution according to Gurobi when the bound constraints are tightened by \(\delta \) i.e. find a solution to the system \(Ax = b\) and \(u - \delta \ge x \ge l + \delta \). We tried \(\delta = 10^{-4}, 10^{-6}, 10^{-8}\) and obtained the same results with Gurobi’s feasibility tolerance set to \(10^{-9}\). We found 29 problems with a feasible solution and 64 without a feasible solution in the NETLIB collection. We used Gurobi version 7.02.

1.3 Additional figures for nonconvex problems

This section gives plots of solver trajectories for the nonconvex problems of Sect. 4.2.

See Figs. 6, 7 and 8.

Fig. 6
figure 6

Comparison on the problem of finding the intersection of two circles

Fig. 7
figure 7

Comparison on a linear program with complementarity constraints

Fig. 8
figure 8

Comparison on a toy drinking water network optimization problem

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haeser, G., Hinder, O. & Ye, Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Math. Program. 186, 257–288 (2021). https://doi.org/10.1007/s10107-019-01454-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-019-01454-4

Keywords

Mathematics Subject Classification

Navigation