Skip to main content
Log in

An LPCC approach to nonconvex quadratic programs

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Filling a gap in nonconvex quadratic programming, this paper shows that the global resolution of a feasible quadratic program (QP), which is not known a priori to be bounded or unbounded below, can be accomplished in finite time by solving two linear programs with linear complementarity constraints, i.e., LPCCs. Specifically, this task can be divided into two LPCCs: the first confirms whether the QP is bounded below on the feasible set and, if not, computes a feasible ray on which the QP is unbounded; the second LPCC computes a globally optimal solution if it exists, by identifying a stationary point that yields the best quadratic objective value. In turn, the global resolution of these LPCCs can be accomplished by a parameter-free, mixed integer-programming based, finitely terminating algorithm developed recently by the authors, which can be enhanced in this context by a new kind of valid cut derived from the second-order conditions of the QP and by exploiting the special structure of the LPCCs. Throughout, our treatment makes no boundedness assumption of the QP; this is a significant departure from much of the existing literature which consistently employs the boundedness of the feasible set as a blanket assumption. The general theory is illustrated by 3 classes of indefinite problems: QPs with simple upper and lower bounds (existence of optimal solutions is guaranteed); same QPs with an additional inequality constraint (extending the case of simple bound constraints); and nonnegatively constrained copositive QPs (no guarantee of the existence of an optimal solution). We also present numerical results to support the special cuts obtained due to the QP connection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audet C., Hansen P., Jaumard B., Savard G.: A symmetrical linear maxmin approach to disjoint bilinear programming. Math. Program. 85, 573–592 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balas E.: Nonconvex quadratic programming via generalized polars. SIAM J. Appl. Math. 28, 335–349 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Balas E.: Disjunctive programming. Ann. Discr. Math. 5, 3–51 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borchers B., Furman J.: A two-phase exact algorithm for MAX-SAT and weighted MAX-SAT Problems. J. Combinatorial Optim. 2, 299–306 (1998)

    Article  MathSciNet  Google Scholar 

  5. Burer S., Vandenbussche D.: Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. Comput. Optim. Appl. 43, 181–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burer S., Vandenbussche D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113, 259–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Codato G., Fischetti M.: Combinatorial Benders’ Cuts for mixed-integer linear programming. Oper. Res. 54, 758–766 (2006)

    Article  MathSciNet  Google Scholar 

  8. Duran M., Grossmann I.E.: An outer-approximation algorithm for a class of mixed integer nonlinear programs. Math. Program. 36, 307–339 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eaves B.C.: On quadratic programming. Manag. Sci. 17, 698–711 (1971)

    Article  MATH  Google Scholar 

  10. Floudas C.A., Visweswaran V.: Quadratic Programming. Handbook of Global Optimization, pp. 217–269. Kluwer Academic Publishers, Dordrecht (1995)

    Google Scholar 

  11. Frank M., Wolfe P.: An algorithm for quadratic programming. Naval Res. Logist. Q. 3, 149–154 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giannessi F., Tomasin E.: Nonconvex quadratic programs, linear complementarity problems, and integer linear programs. In: Conti, R., Ruberti, A. (eds) Fifth Conference on Optimization Techniques (Rome 1973), Part I, Lecture Notes in Computer Science, vol. 3, pp. 437–449. Springer, Berlin (1973)

    Google Scholar 

  13. Grossmann I.E.: MINLP: logic-based methods. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, vol. II., pp. 369–373. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  14. Grossmann I.E.: Generalized disjunctive programming. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, Springer, New York (2007)

    Google Scholar 

  15. Hager W.W., Pardalos P.M., Sahinoglou H.D.: Active constraints, indefinite quadratic test problems, and complexity. J. Optim. Theory Appl. 68, 499–511 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hansen P., Jaumard B., Ruiz M., Xiong J.: Global minimization of indefinite quadratic functions subject to box constraints. Naval Res. Logist. Q. 40, 373–392 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hooker J.N.: Logic-Based Methods for Optimization. Wiley, London (2000)

    Book  MATH  Google Scholar 

  18. Hooker J.N.: Integrated Methods for Optimization. Springer, New York (2006)

    Google Scholar 

  19. Hooker J.N., Ottosson G.: Logic-based benders decomposition. Math. Program. 96, 33–60 (2003)

    MathSciNet  MATH  Google Scholar 

  20. Hu, J.: On linear programs with linear complementarity constraints. Ph.D. thesis, Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy (August 2008)

  21. Hu J., Mitchell J., Pang J.S., Bennett K., Kunapuli G.: On the global solution of linear programs with linear complementarity constraints. SIAM J. Optim. 19, 445–471 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu, J., Mitchell, J.E., Pang, J.S., Yu, B.: On linear programs with linear complementarity constraints. RPI Mathematical Sciences Technical Report. Accepted for publication in the Journal of Global Optimization (September 2009)

  23. Joy, S., Mitchell, J.E., Borchers, B.: A branch-and-cut algorithm for MAX-SAT and weighted MAX-SAT. In: Du, D., Gu, J., Pardalos, P.M. (eds.) Satisfiability Problem: Theory and Applications, [DIMACS Series in Discrete Mathematics and Theoretical Computer Science, volume 35]. American Mathematical Society, pp. 519–536 (1997)

  24. Lee S., Grossmann I.E.: New algorithms for nonlinear disjunctive programming. Comput. Chem. Eng. 24, 2125–2141 (2000)

    Article  Google Scholar 

  25. Luo Z.Q., Tseng P.: Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem. SIAM J. Optim. 2, 43–54 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Majthay A.: Optimality conditions for quadratic programming. Math. Program. 1, 359–365 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: 39th Design automation conference (DAC 2001), Las Vegas, pp. 530–535 (June 2001)

  28. Nemhauser G.L., Savelsbergh M.W.P., Sigismondi G.C.: MINTO, a mixed INTeger optimizer. Oper. Res. Lett. 15, 47–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pang J.S., Leyffer S.: On the global minimization of the value-at-risk. Optim. Methods Softw. 19, 611–631 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pardalos P.M., Vavasis S.A.: Quadratic programming with one negative eigenvalue is NP-hard. J. Global Optim. 1, 15–23 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations. IBM Research Report RC24695. Mathematical Programming, online first (August 2008)

  32. Tawarmalani M., Sahinidis N.V.: Convexification and Global Optimization in Continuous and Mixed Integer Nonlinear Programming. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  33. Vandenbussche D., Nemhauser G.L.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program., Series A 102, 531–557 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Vandenbussche D., Nemhauser G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program., Series A 102, 559–575 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Mitchell.

Additional information

The work of Mitchell was supported by the National Science Foundation under grant DMS-0715446 and by the Air Force Office of Sponsored Research under grant FA9550-08-1-0081. The work of Pang was supported by the Office of Naval Research under grant no. N00014-06-1-0014 and by the Air Force Office of Sponsored Research under grant FA9550-08-1-0061.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Mitchell, J.E. & Pang, JS. An LPCC approach to nonconvex quadratic programs. Math. Program. 133, 243–277 (2012). https://doi.org/10.1007/s10107-010-0426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-010-0426-y

Keywords

Mathematics Subject Classification (2000)

Navigation