Skip to main content

Advertisement

Log in

Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Antimicrobial photodynamic therapy (APDT) combined with endodontic treatment has been recognized as an alternative approach to complement conventional root canal disinfection methods on bacterial biofilms. We developed an in  vitro model of bioluminescent Candida albicans biofilm inside curved dental root canals and investigated the microbial reduction produced when different light delivery methods are employed. Each light delivery method was evaluated in respect to the light distribution provided inside curved root canals. After conventional endodontic preparation, teeth were sterilized before canals were contaminated by a bioluminescent strain of C. albicans (CEC789). Methylene blue (90 μM) was introduced into the canals and then irradiated (λ = 660 nm, P = 100 mW, beam diameter = 2 mm) with laser tip either in contact with pulp chamber or within the canal using an optical diffuser fiber. Light distribution was evaluated by CCD camera, and microbial reduction was monitored through bioluminescence imaging. Our findings demonstrated that the bioluminescent C. albicans biofilm model had good reproducibility and uniformity. Light distribution in dental tissue was markedly dependent on the light delivery system, and this strategy was directly related to microbial destruction. Both light delivery systems performed significant fungal inactivation. However, when irradiation was performed with optical diffuser fiber, microbial burden reduction was nearly 100 times more effective. Bioluminescence is an interesting real-time analysis to endodontic C. albicans biofilm inactivation. APDT showed to be an effective way to inactivate C. albicans biofilms. Diffuser fibers provided optimized light distribution inside curved root canals and significantly increased APDT efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Garcez AS, Ribeiro MS, Tegos GP, Nunez SC, Jorge AO, Hamblin MR (2007) Antimicrobial photodynamic therapy combined with conventional endodontic treatment to eliminate root canal biofilm infection. Lasers Surg Med 39:59–66

    Article  PubMed Central  PubMed  Google Scholar 

  2. Garcez AS, Nunez SC, Hamblin MR, Suzuki H, Ribeiro MS (2010) Photodynamic therapy associated with conventional endodontic treatment in patients with antibiotic-resistant microflora: a preliminary report. J Endod 36:1463–6

    Article  PubMed  Google Scholar 

  3. George S, Kishen A (2008) Influence of photosensitizer solvent on the mechanisms of photoactivated killing of Enterococcus faecalis. Photochem Photobiol 84:734–40

    Article  CAS  PubMed  Google Scholar 

  4. Ng R, Singh F, Papamanou DA, Song X, Patel C, Holewa C, Patel N, Klepac-Ceraj V, Fontana CR, Kent R, Pagonis TC, Stashenko PP, Soukos NS (2011) Endodontic photodynamic therapy ex vivo. J Endod 37:217–22

    Article  PubMed Central  PubMed  Google Scholar 

  5. Soukos NS, Chen PS, Morris JT, Ruggiero K, Abernethy AD, Som S, Foschi F, Doucette S, Bammann LL, Fontana CR, Doukas AG, Stashenko PP (2006) Photodynamic therapy for endodontic disinfection. J Endod 32:979–84

    Article  PubMed  Google Scholar 

  6. Lim EJ, Oak CH, Heo J, Kim YH (2013) Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cells. Oncol Rep 30(2):856–62

    CAS  PubMed  Google Scholar 

  7. Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74(5):656–69

    Article  CAS  PubMed  Google Scholar 

  8. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem PhotobiolSci 3:436–50

    Article  CAS  Google Scholar 

  9. St Denis TG, Dai T, Izikson L, Astrakas C, Anderson RR, Hamblin MR, Tegos GP (2011) All you need is light: antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence 2:509–20

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chandra J, Mukherjee PK, Ghannoum MA (2008) In vitro growth and analysis of Candida biofilms. Nature Prot 3:1909–24

    Article  CAS  Google Scholar 

  11. Arendorf TM, Walker DM (1980) The prevalence and intra-oral distribution of Candida albicans in man. Arch Oral Biol 25:1–10

    Article  CAS  PubMed  Google Scholar 

  12. Siqueira JF Jr, Sen BH (2004) Fungi in endodontic infections. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 97:632–41

    Article  Google Scholar 

  13. Vaghela DJ, Kandaswamy D, Venkateshbabu N, Jamini N, Ganesh A (2011) Disinfection of dentinal tubules with two different formulations of calcium hydroxide as compared to 2 % chlorhexidine: as intracanal medicaments against Enterococcus faecalis and Candida albicans: an in vitro study. J Conserv Dent 14:182–6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Calzavara-Pinton P, Rossi MT, Sala R, Venturini M (2012) Photodynamic Antifungal Chemotherapy. Photochem Photobio 88:512–22

    Article  CAS  Google Scholar 

  15. Sunde PT, Olsen I, Debelian GJ, Tronstad L (2002) Microbiota Periapical Lesions Refract Endod Ther 28(4):304–10

    Google Scholar 

  16. Kovac J, Kovac D, Slobodnikova L, Kotulova D (2013) Enterococcus faecalis and Candida albicans in the dental root canal and periapical infections. Bratisl LekListy 114(12):716–20

    CAS  Google Scholar 

  17. Narayanan LL, Vaishnavi C (2010) Endodontic microbiology. J Conserv Dent 13(4):233–9

    Article  PubMed Central  PubMed  Google Scholar 

  18. Schneider SW (1971) A comparison of canal preparations in straight and curved root canals. Oral Surg Oral Med Oral Pathol 32:271–5

    Article  CAS  PubMed  Google Scholar 

  19. Wu MK, Wesselink PR (1995) Efficacy of three techniques in cleaning the apical portion of curved root canals. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 79:492–6

    Article  CAS  Google Scholar 

  20. Fimple JL, Fontana CR, Foschi F, Ruggiero K, Song X, Pagonis TC, Tanner AC, Kent R, Doukas AG, Stashenko PP, Soukos NS (2008) Photodynamic treatment of endodontic polymicrobial infection in vitro. J Endod 34:728–34

    Article  PubMed Central  PubMed  Google Scholar 

  21. Garcez AS, Nunez SC, Lage-Marques JL, Jorge AO, Ribeiro MS (2006) Efficiency of NaOCl and laser-assisted photosensitization on the reduction of Enterococcus faecalis in vitro. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 102:93–8

    Article  Google Scholar 

  22. Garcez AS, Fregnani ER, Rodriguez HM, Nunez SC, Sabino CP, Suzuki H, Ribeiro MS (2013) The use of optical fiber in endodontic photodynamic therapy. Is it really relevant? Lasers Med Sci 28:79–85

    Article  PubMed  Google Scholar 

  23. Garcez AS, Nunez SC, Lage-Marques JL, Hamblin MR, Ribeiro MS (2007) Photonic real-time monitoring of bacterial reduction in root canals by genetically engineered bacteria after chemomechanical endodontic therapy. Braz Dent J 18:202–7

    Article  PubMed Central  PubMed  Google Scholar 

  24. Enjalbert B, Rachini A, Vediyappan G, Pietrella D, Spaccapelo R, Vecchiarelli A, Brown AJ, d'Enfert C (2010) A multifunctional, synthetic Gaussiaprinceps luciferase reporter for live imaging of Candida albicans infections. IfecImmun 77(11):4847–58

    Google Scholar 

  25. Sedgley C, Applegate B, Nagel A, Hall D (2004) Real-time imaging and quantification of bioluminescent bacteria in root canals in vitro. J Endod 30:893–8

    Article  PubMed  Google Scholar 

  26. Demidova TN, Gad F, Zahra T, Francis KP, Hamblin MR (2005) Monitoring photodynamic therapy of localized infections by bioluminescence imaging of genetically engineered bacteria. J PhotochemPhotobiol B 81(1):15–25

    Article  CAS  Google Scholar 

  27. de Souza SC, Junqueira JC, Balducci I, Koga-Ito CY, Munin E, Jorge AO (2006) Photosensitization of different Candida species by low power laser light. J Photochem Photobiol B 83(1):34–8

    Article  PubMed  Google Scholar 

  28. Campos GN, Pimentel SP, Ribeiro FV, Casarin RC, Cirano FR, Saraceni CH, Casati MZ (2013) The adjunctive effect of photodynamic therapy for residual pockets in single-rooted teeth: a randomized controlled clinical trial. Lasers Med Sci 28:317–24

    Article  PubMed  Google Scholar 

  29. Scwingel AR, Barcessat AR, Núñez SC, Ribeiro MS (2012) Antimicrobial photodynamic therapy in the treatment of oral candidiasis in HIV-infected patients. Photomed Laser Surg 30:429–32

    Article  CAS  PubMed  Google Scholar 

  30. Odor TM, Chandler NP, Watson TF, Ford TR, McDonald F (1999) Laser light transmission in teeth: a study of the patterns in different species. Int Endod J 32(4):296–302

    Article  CAS  PubMed  Google Scholar 

  31. Nunes MR, Mello I, Franco GC, de Medeiros JM, Dos Santos SS, Habitante SM, Lage-Marques JL, Raldi DP (2011) Effectiveness of photodynamic therapy against Enterococcus faecalis, with and without the use of an intracanal optical fiber: an in vitro study. Photomed Laser Surg 29(12):803–8

    Article  CAS  PubMed  Google Scholar 

  32. George R, Walsh LJ (2009) Performance assessment of novel side firing flexible optical fibers for dental applications. Lasers Surg Med 41(3):214–21

    Article  CAS  PubMed  Google Scholar 

  33. George R, Walsh LJ (2011) Performance assessment of novel side firing flexible optical fibers for endodontic applications. J Biomed Opt 16(4):048004

    Article  PubMed  Google Scholar 

  34. Vesselov LM, Whittington W, Lilge L (2004) Performance evaluation of cylindrical fiber optic light diffusers for biomedical applications. Lasers Surg Med 34(4):348–51

    Article  PubMed  Google Scholar 

  35. Fernandez-Oliveras A, Rubino M, Perez MM (2012) Scattering anisotropy measurements in dental tissues and biomaterials. Europ Opt Soc Rap Public 7:12016

    Article  Google Scholar 

  36. Street CN, Pedigo LA, Loebel NG (2010) Energy dose parameters affect antimicrobial photodynamic therapy-mediated eradication of periopathogenic biofilm and planktonic cultures. Photomed Laser SurgSuppl 1:S61–6

    Google Scholar 

  37. Baier J, Maisch T, Regensburger J, Loibl M, Vasold R, Bäumler W (2007) Time dependence of singlet oxygen luminescence provides an indication of oxygen concentration during oxygen consumption. J Biomed Opt 12(6):064008

    Article  PubMed  Google Scholar 

  38. Tavares A, Dias SR, Carvalho CM, Faustino MA, Tomé JP, Neves MG, Tomé AC, Cavaleiro JA, Cunha Â, Gomes NC, Alves E, Almeida A (2011) Mechanisms of photodynamic inactivation of a gram-negative recombinant bioluminescent bacterium by cationic porphyrins. Photochem Photobiol Sci 10(10):1659–69

    Article  CAS  PubMed  Google Scholar 

  39. Núñez SC, Garcez AS, Kato IT, Yoshimura TM, Gomes L, Baptista MS, Ribeiro MS (2014) Effects of ionic strength on the antimicrobial photodynamic efficiency of methylene blue. Photochem Photobiol Sci 13(3):595–602

    Article  PubMed  Google Scholar 

  40. Sharma M, Visai L, Bragheri F, Cristiani I, Gupta PK, Speziale P (2008) Toluidine blue-mediated photodynamic effects on staphylococcal biofilms. Antimicrob Agents Chemother 52(1):299–305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Pascon FM, Kantovitz KR, Soares LE, Santo AM, Martin AA, Puppin-Rontani RM (2012) Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy dispersive x-ray fluorescence spectroscopy, and scanning electron microscopy study. J Biomed Opt 17(7):075008

    Article  PubMed  Google Scholar 

  42. Saleh AA, Ettman WM (1999) Effect of endodontic irrigation solutions on microhardness of root canal dentine. J Dentistry 27(1):43–6

    Article  CAS  Google Scholar 

  43. Sim TPC, Knowles JC, Ng YL, Shelton J, Gulabivala K (2000) Effect of sodium hypochlorite on mechanical properties of dentine and tooth surface strain. Int End J 34(2):120–32

    Article  Google Scholar 

  44. Dai T, Huang YY, Hamblin MR (2009) Photodynamictherapy for localized infections—state of the art. Photodiagnosis Photodyn Ther 6(3–4):170–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Kato IT, Prates RA, Sabino CP, Fuchs BB, Tegos GP, Mylonakis E, Hamblin MR, Ribeiro MS (2013) Antimicrobial photodynamic inactivation inhibits Candida albicans virulence factors and reduces in vivo pathogenicity. Antimicrob Agents Chemother 57:445–51

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Chibebe Junior J, Sabino CP, Tan X, Junqueira JC, Wang Y, Fuchs BB, Jorge AO, Tegos GP, Hamblin MR (2013) Mylonakis E (2013) Selective photoinactivation of Candida albicans in the non-vertebrate host infection model Galleria mellonella. BMC Microbiol 13:217

    Article  PubMed Central  PubMed  Google Scholar 

  47. Chibebe Junior J, Fuchs BB, Sabino CP, Junqueira JC, Jorge AO, Ribeiro MS, Gilmore MS, Rice LB, Tegos GP, Hamblin MR, Mylonakis E (2013) Photodynamic and antibiotic therapy impair the pathogenesis of Enterococcus faecium in a whole animal insect model. PLoS One 8(2):e55926

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant 2010/13313-9) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). MR Hamblin was supported by the US National Institutes of Health (NIH R01AI050875). The authors gratefully recognize J. Chibebe Junior (Department of Biosciences and Oral Diagnosis, Univ Estadual Paulista/UNESP, São José dos Campos, SP 12245–000, Brazil) for the experimental assistance and Christophe d’Enfert (Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France) for providing the luciferase-expressing strain of C. albicans.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabino, C.P., Garcez, A.S., Núñez, S.C. et al. Real-time evaluation of two light delivery systems for photodynamic disinfection of Candida albicans biofilm in curved root canals. Lasers Med Sci 30, 1657–1665 (2015). https://doi.org/10.1007/s10103-014-1629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-014-1629-x

Keywords

Navigation