Skip to main content

Advertisement

Log in

Sustainability assessment framework for low rise commercial buildings: life cycle impact index-based approach

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The building industry has regularly been criticized for resource exploitation, energy use, waste production, greenhouse gas emissions, and impacts on the landscape. The growing population demands more built environment to accommodate the socioeconomic wellbeing. Adopting conventional construction practices would continue the aforementioned issues. Therefore, it is important to integrate life cycle thinking into building construction to minimize its social, environmental, and economic impacts. The objective of this study is to assess the life cycle impact of commonly used wall–roof systems for low rise commercial building construction in Canada. A framework is developed to assess different building alternatives using the triple bottom line of sustainability. Identified environmental and socioeconomic impact indicators are eventually aggregated to develop a life cycle impact index. Material quantities of six wall–roof combinations for a single-storey commercial building were obtained from industrial partners. State-of-the-art life cycle assessment software is used to assess the life cycle impacts of different wall–roof systems. To accommodate decision makers’ preferences of sustainability, wall–roof combinations are assessed for three potential scenarios namely, eco-centric, neutral, and economy-centric using multi-criteria decision analysis. The framework has also been implemented on a case study of low rise building in Calgary (Alberta, Canada) to evaluate its practicality. The study results revealed that the concrete–steel building is the most sustainable alternative in neutral and economy-centric scenario while steel–wood building is the most sustainable building in eco-centric scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Carbon dioxide equivalents.

  2. From 79 Mt CO2e in 2010.

  3. RSMeans provides updated building construction cost data for estimation.

References

  • Adetunji I, Price A, Fleming P, Kemp P (2003) Sustainability and the UK construction industry: a review. Proc ICE Eng Sustain 156:15. doi:10.1680/ensu.2003.156.4.185

    Google Scholar 

  • Ajayi SO, Oyedele LO, Ceranic B et al (2015) Life cycle environmental performance of material specification: a BIM-enhanced comparative assessment. Int J Sustain Build Technol Urban Dev 6:14–24. doi:10.1080/2093761X.2015.1006708

    Article  Google Scholar 

  • Akadiri PO, Olomolaiye PO (2012) Development of sustainable assessment criteria for building materials selection. Eng Constr Archit Manag 19:666–687. doi:10.1108/09699981211277568

    Article  Google Scholar 

  • Anderson J, Shiers D, Steele K (2009) The green guide to specification: an environmental profiling system for building materials and components. Wiley, Ames

    Google Scholar 

  • Asokan P, Osmani M, Price ADF (2009) Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites. J Clean Prod 17:821–829. doi:10.1016/j.jclepro.2008.12.004

    Article  CAS  Google Scholar 

  • Assaf SA, Al-Hammad A, Jannadi OA, Saad SA (2002) Assessment of the problems of application of life cycle costing in construction projects. Cost Eng 44:17–22

    Google Scholar 

  • Athena Sustainable Materials Institute (2016) IE for buildings. Athena Sustainable Materials Institute, Ottawa

    Google Scholar 

  • Bank LC, Thompson BP, McCarthy M (2011) Decision-making tools for evaluating the impact of materials selection on the carbon footprint of buildings. Carbon Manag 2:431–441. doi:10.4155/cmt.11.33

    Article  Google Scholar 

  • Boyd DR (2001) Canada vs. the OECD: an environmental comparison. University of Victoria, Victoria

    Google Scholar 

  • Bull JW (1993) Life cycle costing for construction. Spon press, London

    Google Scholar 

  • Cabeza LF, Rincón L, Vilariño V et al (2014) Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: a review. Renew Sustain Energy Rev 29:394–416. doi:10.1016/j.rser.2013.08.037

    Article  Google Scholar 

  • Carter K, Fortune C (2007) Sustainable development policy perceptions and practice in the UK social housing sector. Constr Manag Econ 25:399–408. doi:10.1080/01446190600922578

    Article  Google Scholar 

  • CCME (2014) State of waste management in Canada. Canadian Council of Ministers of Environment (CCME), Kanata

    Google Scholar 

  • Chen Y, Okudan GE, Riley DR (2010) Sustainable performance criteria for construction method selection in concrete buildings. Autom Constr 19:235–244. doi:10.1016/j.autcon.2009.10.004

    Article  Google Scholar 

  • City of Calgary (2015) Landfill rates

  • Crawford R (2011) Life cycle assessment in the built environment. Taylor & Francis, New York

    Google Scholar 

  • David Suzuki Foundation (2010) The maple leaf in the OECD: Canada’s environmental performance. David Suzuki Foundation, Vancouver

    Google Scholar 

  • Demaid A, Quintas P (2006) Knowledge across cultures in the construction industry: sustainability, innovation and design. Technovation 26:603–610. doi:10.1016/j.technovation.2005.06.003

    Article  Google Scholar 

  • Environment Canada (2012a) Canada’s emissions trends 2012. Minister of the Environment, Ottawa

    Google Scholar 

  • Environment Canada (2012b) National Inventory Report: 1990–2010. Ottawa

  • European Commission (2014) Life-cycle costing

  • Fard NH (2012) Emergy based-sustainability rating system for buildings: case study for Canada. The University of British Columbia, Vancouver

    Google Scholar 

  • Frenette CD, Bulle C, Beauregard R et al (2010) Using life cycle assessment to derive an environmental index for light-frame wood wall assemblies. Build Environ 45:2111–2122. doi:10.1016/j.buildenv.2010.03.009

    Article  Google Scholar 

  • Goedkoop M (2001) The Eco-indicator 99 a damage oriented method for life cycle impact assessment methodology annex

  • Goedkoop M, Heijungs R, Huijbregts M et al (2012) ReCiPe 2008: a life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, First edit. Ministry of Housing, Spatial Planning and Environment (VROM)

  • Goggins J, Keane T, Kelly A (2010) The assessment of embodied energy in typical reinforced concrete building structures in Ireland. Energy Build 42:735–744. doi:10.1016/j.enbuild.2009.11.013

    Article  Google Scholar 

  • Gu L, Lin B, Zhu Y et al (2008) Integrated assessment method for building life cycle environmental and economic performance. Build Simul 1:169–177. doi:10.1007/s12273-008-8414-3

    Article  Google Scholar 

  • Haider H, Sadiq R, Tesfamariam S (2015) Inter-utility performance benchmarking model for small-to-medium-sized water utilities: aggregated performance indices. J Water Resour Plann Manag. doi:10.1061/(ASCE)WR.1943-5452.0000552,04015039

    Google Scholar 

  • Hampton D (1994) Procurement issues. J Manag Eng 10:45–49. doi:10.1061/(ASCE)9742-597X(1994)10:6(45)

    Article  Google Scholar 

  • Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM (2011) The water footprint assessment manual

  • Hossaini N, Reza B, Akhtar S et al (2015) AHP based life cycle sustainability assessment (LCSA) framework: a case study of six storey wood frame and concrete frame buildings in Vancouver. J Environ Plan Manag 58:1217–1241. doi:10.1080/09640568.2014.920704

    Article  Google Scholar 

  • Industry Canada (2011) Buildings. In: Corp. Soc. Responsib

  • ISO 14040 (2006) Environmental management–Life cycle assessment—principles and framework. International Organization for Standardization, Geneva

    Google Scholar 

  • Jeffrey C (2011) Construction and demolition waste recycling: a literature review. Halifax

  • Ji C, Hong T (2016) Comparative analysis of methods for integrating various environmental impacts as a single index in life cycle assessment. Environ Impact Assess Rev 57:123–133. doi:10.1016/j.eiar.2015.11.013

    Article  Google Scholar 

  • Jones P, Comfort D, Hillier D (2006) Corporate social responsibility and the UK construction industry. J Corp Real Estate 8:134–150. doi:10.1108/14630010610711757

    Article  Google Scholar 

  • Kahhat R, Crittenden J, Sharif F et al (2009) Environmental impacts over the life cycle of residential buildings using different exterior wall systems. J Infrastruct Syst 15:211–221. doi:10.1061/(ASCE)1076-0342(2009)15:3(211)

    Article  Google Scholar 

  • Kashyap M, Khalfan M, Zainul-Abidin N (2003) A proposal foe achieving sustainability in construction projects through concurrent engineering. The RICS Foundation, London

    Google Scholar 

  • Kibert CJ (2012) Sustainable construction: green building design and delivery, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Kloepffer W (2008) Life cycle sustainability assessment of products. Int J Life Cycle Assess 13:89–95. doi:10.1065/lca2008.02.376

    Article  Google Scholar 

  • Lindfors L-G (1995) Nordic guidelines on life-cycle assessment. Nordic Council of Ministers, Indiana University, Copenhagen

    Google Scholar 

  • Liu A, Fellows R (2008) Impact of participants’ values on construction sustainability. Proc ICE Eng Sustain 161:219–227. doi:10.1680/ensu.2008.161.4.219

    Article  Google Scholar 

  • Medineckiene M, Turskis Z, Zavadskas EK (2010) Sustainable construction taking into account the building impact on the environment. J Environ Eng Landsc Manag 18:118–127. doi:10.3846/jeelm.2010.14

    Article  Google Scholar 

  • Meil J, Lucuik M, O’Connor J, Dangerfield J (2006) A life cycle environmental and economic assessment of optimum value engineering in houses. For Prod J 56:19–25

    Google Scholar 

  • Monahan J, Powell JC (2011) An embodied carbon and energy analysis of modern methods of construction in housing: a case study using a lifecycle assessment framework. Energy Build 43:179–188. doi:10.1016/j.enbuild.2010.09.005

    Article  Google Scholar 

  • National Audit Office (2005) Improving public services through better construction. National Audit Office, London

    Google Scholar 

  • Natural Resources Canada (2012) Energy efficiency trends in Canada, 1990 to 2009. Natural Resources Canada, Ottawa

    Google Scholar 

  • Natural Resources Canada (2013) Sustainable development strategy 2007–2009. Natural Resources Canada, Ottawa

    Google Scholar 

  • Natural Resources Canada (2014) Buildings. Natural Resources Canada, Ottawa

    Google Scholar 

  • Nisbet M, Venta G, Foo S (2002) Demolition and deconstruction: review of the current status of reuse and recycling of building materials. Pittsburgh

  • Nyboer J, Kamiya G (2012) Energy use and related data: Canadian Construction Industry 1990 to 2010. Burnaby BC

  • Osmani M, Glass J, Price ADF (2008) Architects’ perspectives on construction waste reduction by design. Waste Manag 28:1147–1158. doi:10.1016/j.wasman.2007.05.011

    Article  CAS  Google Scholar 

  • Phelan M (2015) Square foot costs 2015 book. RSMeans, Norwell

    Google Scholar 

  • Pizzol M, Weidema B, Brandão M, Osset P (2015) Monetary valuation in life cycle assessment: a review. J Clean Prod 86:170–179. doi:10.1016/j.jclepro.2014.08.007

    Article  Google Scholar 

  • Ramesh T, Prakash R, Shukla KK (2010) Life cycle energy analysis of buildings: an overview. Energy Build 42:1592–1600. doi:10.1016/j.enbuild.2010.05.007

    Article  Google Scholar 

  • Recycling council of Alberta (2012) Recycling Council of Alberta Newsletter: connector. Recycling council of Alberta, Bluffton

    Google Scholar 

  • Reza B, Sadiq R, Hewage K (2011) Sustainability assessment of flooring systems in the city of Tehran: an AHP-based life cycle analysis. Constr Build Mater 25:2053–2066. doi:10.1016/j.conbuildmat.2010.11.041

    Article  Google Scholar 

  • Reza B, Sadiq R, Hewage K (2013) Emergy-based life cycle assessment (Em-LCA) for sustainability appraisal of infrastructure systems: a case study on paved roads. Clean Technol Environ Policy. doi:10.1007/s10098-013-0615-5

    Google Scholar 

  • Rezgui Y, Wilson IE, Li H (2010) Promoting sustainability awareness through energy engaged virtual communities of construction stakeholders. Springer, Heidelberg

    Book  Google Scholar 

  • Risch E, Loubet P, Núñez M, Roux P (2014) How environmentally significant is water consumption during wastewater treatment? Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations. Water Res 57:20–30. doi:10.1016/j.watres.2014.03.023

    Article  CAS  Google Scholar 

  • Ruparathna R (2013) Emergy based procurement framework to improve sustainability performance in construction. University of British Columbia, Vancouver

    Google Scholar 

  • Ruparathna R, Hewage K (2015) Sustainable procurement in the Canadian construction industry: challenges and benefits. Can J Civ Eng 42:417–426. doi:10.1139/cjce-2014-0376

    Article  Google Scholar 

  • Scheuer C, Keoleian GA, Reppe P (2003) Life cycle energy and environmental performance of a new university building: modeling challenges and design implications. Energy Build 35:1049–1064. doi:10.1016/S0378-7788(03)00066-5

    Article  Google Scholar 

  • Scrap Monster (2015) North America scarp metal prices

  • Sev A (2009) How can the construction industry contribute to sustainable development?A conceptual framework. Sustain Dev 17:161–173. doi:10.1002/sd

    Article  Google Scholar 

  • Sharma A, Saxena A, Sethi M, Shree V (2011) Life cycle assessment of buildings: a review. Renew Sustain Energy Rev 15:871–875. doi:10.1016/j.rser.2010.09.008

    Article  Google Scholar 

  • Spence R, Mulligan H (1995) Sustainable development and the construction industry. Habitat Int 19:279–292. doi:10.1016/0197-3975(94)00071-9

    Article  Google Scholar 

  • Srinivasan RS, Ingwersen W, Trucco C et al (2014) Comparison of energy-based indicators used in life cycle assessment tools for buildings. Build Environ 79:138–151. doi:10.1016/j.buildenv.2014.05.006

    Article  Google Scholar 

  • Takano A, Hughes M, Winter S (2014) A multidisciplinary approach to sustainable building material selection: a case study in a Finnish context. Build Environ 82:526–535. doi:10.1016/j.buildenv.2014.09.026

    Article  Google Scholar 

  • Takano A, Pal SK, Kuittinen M et al (2015) The effect of material selection on life cycle energy balance: a case study on a hypothetical building model in Finland. Build Environ 89:192–202. doi:10.1016/j.buildenv.2015.03.001

    Article  Google Scholar 

  • Thormark C (2006) The effect of material choice on the total energy need and recycling potential of a building. Build Environ 41:1019–1026. doi:10.1016/j.buildenv.2005.04.026

    Article  Google Scholar 

  • Toronto and Barrie Commercial Building Inspector (2016) Life expectancy of commercial building components. http://www.barrie101.com/life_expectancy.html. Accessed 17 Mar 2016

  • United Nations Environment Program (UNEP) (2011) Towards a life cycle sustainability assessment: making informed choices on products. United Nations Environment Programme, Nirobi

    Google Scholar 

  • Van Ooteghem K, Xu L (2012) The life-cycle assessment of a single-storey retail building in Canada. Build Environ 49:212–226. doi:10.1016/j.buildenv.2011.09.028

    Article  Google Scholar 

  • Windapo A, Ogunsanmi O (2014) Construction sector views of sustainable building materials. Proc Inst Civ Eng Eng Sustain 167:64–75. doi:10.1680/ensu.13.00011

    Google Scholar 

  • Wong JKW, Li H (2008) Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection of intelligent building systems. Build Environ 43:108–125. doi:10.1016/j.buildenv.2006.11.019

    Article  Google Scholar 

  • Wübbenhorst KL (1986) Life cycle costing for construction projects. Long Range Plann 19:87–97. doi:10.1016/0024-6301

    Article  Google Scholar 

  • Yale University (2014) Country rankings. Yale University, New Haven

    Google Scholar 

  • Yoon K, Hwang GI (1995) Multiple attribute decision making: an introduction, Sage University. Sage, Thousand Oaks

    Book  Google Scholar 

  • Zamagni A, Buttol P, Porta PL et al (2008) Critical review of the current research needs and limitations related to ISOLCA practice. Leiden, Netherlands

    Google Scholar 

Download references

Acknowledgments

Authors would like to thank Mr. Phil Long, Senior Project Manager at Maple Reinders Inc. Canada for providing case study data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehan Sadiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Nassar, F., Ruparathna, R., Chhipi-Shrestha, G. et al. Sustainability assessment framework for low rise commercial buildings: life cycle impact index-based approach. Clean Techn Environ Policy 18, 2579–2590 (2016). https://doi.org/10.1007/s10098-016-1168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1168-1

Keywords

Navigation