Skip to main content

Advertisement

Log in

Genotypic diversity of Pseudomonas aeruginosa in cystic fibrosis siblings in Qatar using AFLP fingerprinting

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa is one of the primary pathogens in patients with cystic fibrosis (CF) and a major cause of morbidity and mortality. Reports of the spread of epidemic or transmissible strains of P. aeruginosa within and across CF centers raised the possibility of clonal spread among siblings with CF. This work reports the genotypic relatedness of P. aeruginosa in CF patients with the CFTR I1234V mutation, and to determine whether the genotypes are identical among CF siblings and among different families with the same CFTR mutation. Sixty-six P. aeruginosa isolates were obtained from sputa/deep-pharyngeal swabs from 27 CF patients belonging to 17 families. Genotypic relatedness was assessed using amplified fragment-length polymorphism (AFLP) fingerprinting. Twenty-three distinct genotypes of P. aeruginosa were identified. Eleven families each had one distinct genotype. In the other 6 families more than one genotype was observed; 3 families each showed two genotypes, 2 families each had three genotypes and 1 family had four genotypes of P. aeruginosa. In several cases, siblings with CF from the same family harbored the same strain of P. aeruginosa, which were different from the genotypes in other families. On the other hand, there was an overlap in P. aeruginosa between closely related families. Some patients show persistent colonization with the same genotype of P. aeruginosa over the longitudinal period. The presence of the same genotypes in siblings of the same family and closely related families suggests cross-transmission of P. aeruginosa or acquisition from common environmental exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jacques J, Derelle J, Weber M, Vidailhet M (1998) Pulmonary evolution of cystic fibrosis patients colonized by Pseudomonas aeruginosa and/or Burkholderia cepacia. Eur J Pediatr 157:427–431

    Article  CAS  PubMed  Google Scholar 

  2. Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–951

    Article  PubMed  Google Scholar 

  3. Collins J, Farrell PM (2001) Acceleration of lung disease in children with cystic fibrosis after Pseudomonas aeruginosa acquisition. Pediatr Pulmonol 32:277–287

    Article  PubMed  Google Scholar 

  4. Henry RL, Mellis CM, Petrovic L (1992) Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol 12:158–161

    Article  CAS  PubMed  Google Scholar 

  5. Li Z, Kosorok MR, Farrell PM, Laxova A, West SE, Green CG, Collins J, Rock MJ, Splaingard ML (2005) Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis. JAMA 293:581–588

    Article  CAS  PubMed  Google Scholar 

  6. Fegan M, Francis P, Hayward AC, Davis GH, Fuerst JA (1990) Phenotypic conversion of Pseumonas aeruginosa in cystic fibrosis. J Clin Microbiol 28:1143–1146

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Jones AM, Dodd ME, Morris J, Doherty C, Govan JR, Webb AK (2010) Clinical outcome for cystic fibrosis patients infected with transmissible Pseudomonas aeruginosa: an 8-year prospective study. Chest 137:1405–1409

    Article  PubMed  Google Scholar 

  8. Al-Aloul M, Crawley J, Winstanley C, Hart CA, Ledson MJ, Walshaw MJ (2004) Increased morbidity associated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients. Thorax 59:334–336

    Article  CAS  PubMed  Google Scholar 

  9. Qin X, Emerson J, Stapp J, Stapp L, Abe P, Burns JL (2003) Use of real-time PCR with multiple targets to identify Pseudomonas aeruginosa and other nonfermenting gram-negative bacilli from patients with cystic fibrosis. J Clin Microbiol 41:4312–4317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wellinghausen N, Köthe J, Wirths B, Sigge A, Poppert S (2005) Superiority of molecular techniques for identification of gram-negative, oxidase-positive rods, including morphologically nontypical Pseudomonas aeruginosa, from patients with cystic fibrosis. J Clin Microbiol 43:4070–4075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kidd TJ, Ramsay KA, Hu H, Bye PT, Elkins MR, Grimwood K, Harbour C, Marks GB, Nissen MD, Robinson PJ, Rose BR, Sloots TP, Wainwright CE, Bell SC (2009) Low rates of Pseudomonas aeruginosa misidentification in isolates from cystic fibrosis patients. J Clin Microbiol 47:1503–1509

    Article  PubMed Central  PubMed  Google Scholar 

  12. Kidd TJ, Grimwood K, Ramsay KA, Rainey PB, Bell SC (2011) Comparison of three molecular techniques for typing Pseudomonas aeruginosa isolates in sputum samples from patients with cystic fibrosis. J Clin Microbiol 49:263–268

    Article  PubMed Central  PubMed  Google Scholar 

  13. Abdul Wahab A, Al Thani G, Dawod ST, Kambouris M, Al Hamed M (2001) Heterogeneity of the cystic fibrosis phenotype in a large kindred family in Qatar with cystic fibrosis mutation (I1234V). J Trop Pediatr 47:110–112

    CAS  PubMed  Google Scholar 

  14. Banjar H, Kambouris M, Meyer BF, Al-Mehaidib A, Mogirri I (1999) Geographic distribution of cystic fibrosis transmembrane regulator gene mutations in Saudi Arabia. Ann Trop Paediatr 19:69–73

    Article  CAS  PubMed  Google Scholar 

  15. Abdul Wahab A, Abushahin A (2010) Pseudomonas aeruginosa in cystic fibrosis patients with CFTR I1234V in a large kindred family. Qatar Med J 19:28–31

    Google Scholar 

  16. Lackner M, de Hoog GS, Verweij PE, Najafzadeh MJ, Curfs-Breuker I, Klaassen CH, Meis JF (2012) Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species. Antimicrob Agents Chemother 56:2635–2642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Renders NH, Sijmon MA, van Belkum A, Overbreek SE, Mouton JW, Verbrugh HA (1997) Exchange of Pseudomonas aeruginosa strains among cystic fibrosis siblings. Res Microbiol 148:447–454

    Article  CAS  PubMed  Google Scholar 

  18. Grothues D, Koopmann U, von der Hardt H, Tümmler B (1988) Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol 26:1973–1977

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Wolz C, Kiosz G, Ogle JW, Vasil ML, Schaad U, Botzenhart K, Döring G (1989) Pseudomonas aeruginosa cross-colonization and persistence in patients with cystic fibrosis. Use of a DNA probe. Epidemiol Infect 102:205–214

    Article  CAS  PubMed  Google Scholar 

  20. Speert DP, Campbell ME, Henry DA, Milner R, Taha F, Gravelle A, Davidson AG, Wong LT, Mahenthiralingam E (2002) Epidemiology of Pseudomonas aeruginosa in cystic fibrosis in British Columbia, Canada. Am J Respir Crit Care Med 166:988–993

    Article  PubMed  Google Scholar 

  21. Jones AM, Govan JR, Doherty CJ, Dodd ME, Isalska BJ, Stanbridge TN, Webb AK (2001) Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis clinic. Lancet 358:557–558

    Article  CAS  PubMed  Google Scholar 

  22. Logan C, Habington A, Lennon G, Grogan J, Byrne M, O’Leary J, O’Sullivan N (2012) Genetic relatedness of Pseudomonas aeruginosa isolates among a paediatric cystic fibrosis patient cohort in Ireland. J Med Microbiol 61:64–70

    Article  CAS  PubMed  Google Scholar 

  23. Van Daele SG, Franckx H, Verhelst R, Schelstraete P, Haerynck F, Van Simaey L, Claeys G, Vaneechoutte M, de Baets F (2005) Epidemiology of Pseudomonas aeruginosa in a cystic fibrosis rehabilitation centre. Eur Respir J 25:474–481

    Article  PubMed  Google Scholar 

  24. Da Silva Filho LV, Levi JE, Bento CN, Rodrigues JC, da Silvo Ramos SR (2001) Molecular epidemiology of Pseudomonas aeruginosa infections in a cystic fibrosis outpatient clinic. J Med Microbiol 50:261–267

  25. Hoogkamp-Korstanje JA, Meis JF, Kissing J, van der Laag J, Melchers WJ (1995) Risk of cross-colonization and infection by Pseudomonas aeruginosa in a holiday camp for cystic fibrosis patients. J Clin Microbiol 33:572–575

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Vosahlikova S, Drevinek P, Cinek O, Pohunek P, Maixnerova M, Urbaskova P, van den Reijden TJ, Dijkshoorn L, Nemec A (2007) High genotypic diversity of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis in the Czech Republic. Res Microbiol 158:324–329

    Article  CAS  PubMed  Google Scholar 

  27. Brimicombe RW, Dijkshoorn L, van der Reijden TJ, Kardoes I, Pitt TL, van den Broek PJ, Heijerman HG (2008) Transmission of Pseudomonas aeruginosa in children with cystic fibrosis attending summer camps in The Netherlands. J Cyst Fibros 7:30–36

    Article  CAS  PubMed  Google Scholar 

  28. Ballarini A, Scalet G, Kos M, Cramer N, Wiehlmann L, Jousson O (2012) Molecular typing and epidemiological investigation of clinical populations of Pseudomonas aeruginosa using an oligonucleotide-microarray. BMC Microbiol 12:152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kidd TJ, Ramsay KA, Hu H, Marks GB, Wainwright CE, Bye PT, Elkins MR, Robinson PJ, Rose BR, Wilson JW, Grimwood K, Bell SC (2013) Shared Pseudomonas aeruginosa genotypes are common in Australian cystic fibrosis centres. Eur Respir J 41:1091–1100

    Article  PubMed  Google Scholar 

  30. Waters V, Zlosnik JE, Yau YC, Speert DP, Aaron SD, Guttman DS (2013) Comparison of three typing methods for Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 31:3341–3350

    Article  Google Scholar 

  31. Janssen P, Coopman R, Huys G, Swings J, Bleeker M, Vos P, Zabeau M, Kersters K (1996) Evaluation of the DNA fingerprinting method AFLP as an new tool in bacterial taxonomy. Microbiology 142:1881–1893

    Article  CAS  PubMed  Google Scholar 

  32. Geornaras I, Kunene NF, von Holy A, Hastings JW (1999) Amplified fragment length polymorphism fingerprinting of Pseudomonas strains from a poultry processing plant. Appl Environ Microbiol 65:3828–3833

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Speijer H, Savelkoul PH, Bonten MJ, Stobberingh EE, Tjhie JH (1999) Application of different genotyping methods for Pseudomonas aeruginosa in a setting of endemicity in an intensive care unit. J Clin Microbiol 37:3654–3661

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Renders N, van Belkum A, Bath A, Goessens W, Mouton JW, Verbrugh H (1996) Typing of Pseudomonas aeruginosa strains from patients with cystic fibrosis: phenotypic versus genotyping. Clin Microbiol Infect 1:261–265

    PubMed  Google Scholar 

  35. McDowell A, Mahenthiralingam E, Dunbar KE, Moore JE, Crowe M, Elborn JS (2004) Epidemiology of Burkholderia cepacia complex species recovered from cystic fibrosis patients: issues related to patient segregation. J Med Microbiol 53:663–668

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdul Wahab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdul Wahab, A., Taj-Aldeen, S.J., Hagen, F. et al. Genotypic diversity of Pseudomonas aeruginosa in cystic fibrosis siblings in Qatar using AFLP fingerprinting. Eur J Clin Microbiol Infect Dis 33, 265–271 (2014). https://doi.org/10.1007/s10096-013-1954-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1954-1

Keywords

Navigation