Skip to main content
Log in

Influence of sodium chloride on thermal denaturation of a high-salt-tolerant neutral protease from Aspergillus oryzae

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The temperature and pH stability of proteases have been extensively investigated. A neutral protease produced by Aspergillus oryzae was thermodynamically characterized at high-salt environment. When the protease was tested at 24% NaCl and 60°C, its half-life was increased to 30.0 min, 111% longer than that of control. Its Gibbs free energy and activation energy for denaturation in high NaCl concentration solutions were higher than in low salt solutions and increased by 2.1 and 4.75 kJ/mol, respectively. The protease exhibited higher thermal stability in higher salt conditions. This feature is beneficial to soybean sauce fermentation by enhancing the protease performance and taste of the product. Analysis by farultraviolet circular dichroism (far-UV CD) spectroscopy revealed that α-helix conformation in the protease increased from 3.2 to 31.7%, respectively, when the NaCl concentration increased from 0 to 18%, in agreement with the results deduced by thermodynamic calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ikasari L, Mitchell DA. Leaching and characterization of Rhizopus oligosporus acid protease from solid-state fermentation. Enzyme Microb. Tech. 19: 171–175 (1996)

    Article  CAS  Google Scholar 

  2. Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597–635 (1998)

    CAS  Google Scholar 

  3. Luh B. Industrial production of soy sauce. J. Ind. Microbiol. Biot. 14: 467–471 (1995)

    CAS  Google Scholar 

  4. Impoolsup A, Bhumiratana A, Flegel TW. Isolation of alkaline and neutral proteases from Aspergillus flavus var. columnaris, a soy sauce koji mold. Appl. Environ. Microbiol. 42: 619–628 (1981)

    CAS  Google Scholar 

  5. Makhatadze GI, Privalov PL. Energetics of protein sturcture. Adv. Protein Chem. 47: 307–425 (1995)

    Article  CAS  Google Scholar 

  6. Baldwin RL. How Hofmeister ion interactions affect protein stability. Biophys. J. 71: 2056–2063 (1996)

    Article  CAS  Google Scholar 

  7. Matsuo K, Watanabe H, Tate S, Tachibana H, Gekko K. Comprehensive secondary-structure analysis of disulfide variants of lysozyme by synchrotron-radiation vacuum-ultraviolet circular dichroism. Proteins 77: 191–201 (2009)

    Article  CAS  Google Scholar 

  8. Wang D, Zheng ZY, Feng J, Zhan XB, Zhang LM, Wu JR, Lin CC, Zhu L. A high-salt-tolerant neutral protease from Aspergillus oryzae: Purification, characterization and kinetic properties. Appl. Biochem. Microbiol. 49: 378–385 (2013)

    Article  CAS  Google Scholar 

  9. Devaraj K, Gowda LR, Prakash V. An unusual thermostable aspartic protease from the latex of Ficus racemosa (L.). Phytochem. 69: 647–655 (2008)

    Article  CAS  Google Scholar 

  10. Hernández-Martínez R, Gutiérrez-Sánchez G, Bergmann CW, Loera-Corral O, Rojo-Domínguez A, Huerta-Ochoa S, Regalado-González C, Prado-Barragán LA. Purification and characterization of a thermodynamic stable serine protease from Aspergillus fumigatus. Process Biochem. 46: 2001–2006 (2011)

    Article  Google Scholar 

  11. Kristjansson M, Kinsella J. Protein and enzyme stability: Structural, thermodynamic, and experimental aspects. Adv. Food Nutr. Res. 35: 237–316 (1991)

    Article  CAS  Google Scholar 

  12. Anson ML. The estimation of pepsin, trypsin, papain, and cathepsin with hemoglobin. J. Gen. Physiol. 22: 79–89 (1938)

    Article  CAS  Google Scholar 

  13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951)

    CAS  Google Scholar 

  14. Dogan N, Tari C. Characterization of three-phase partitioned exopolygalacturonase from Aspergillus sojae with unique properties. Biochem. Eng. J. 39: 43–50 (2008)

    Article  CAS  Google Scholar 

  15. Ortega N, de Diego S, Perez-Mateos M, Busto M. Kinetic properties and thermal behaviour of polygalacturonase used in fruit juice clarification. Food Chem. 88: 209–217 (2004)

    Article  CAS  Google Scholar 

  16. Siddiqui K, Rashid M, Rajoka M. Kinetic analysis of the active site of an intracellular β-glucosidase from Cellulomonas biazotea. Folia Microbiol. 42: 53–58 (1997)

    Article  CAS  Google Scholar 

  17. Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 287: 252–260 (2000)

    Article  CAS  Google Scholar 

  18. Iqbal Z, Rashid M, Jabbar A, Malana M, Khalid A, Rajoka M. Kinetics of enhanced thermostability of an extracellular glucoamylase from Arachniotus sp. Biotech. Lett. 25: 1667–1670 (2003)

    Article  CAS  Google Scholar 

  19. Olusesan AT, Azura LK, Forghani B, Bakar FA, Mohamed AKS, Radu S, Manap MYA, Saari N. Purification, characterization and thermal inactivation kinetics of a non-regioselective thermostable lipase from a genotypically identified extremophilic Bacillus subtilis NS 8. New Biotech. 28: 738–745 (2011)

    Article  CAS  Google Scholar 

  20. Segel IH. Enzyme Kinetics. Biochemical Calculation. 2nd ed. John Wiley and Sons, New York, NY, USA. p. 197. (1976)

    Google Scholar 

  21. Pace CN, Grimsley GR. Ribonuclease T1 is stabilized by cation and anion binding. Biochem. 27: 3242–3246 (1988)

    Article  CAS  Google Scholar 

  22. Nishimura C, Uversky VN, Fink AL. Effect of salts on the stability and folding of staphylococcal nuclease. Biochem. 40: 2113–2128 (2001)

    Article  CAS  Google Scholar 

  23. Wright DB, Banks DD, Lohman JR, Hilsenbeck JL, Gloss LM. The effect of salts on the activity and stability of Escherichia coli and Haloferax volcanii dihydrofolate reductases. J. Mol. Biol. 323: 327–344 (2002)

    Article  CAS  Google Scholar 

  24. Gloss LM, Topping TB, Binder AK, Lohman JR. Kinetic folding of Haloferax volcanii and Escherichia coli dihydrofolate reductases: Haloadaptation by unfolded state destabilization at high ionic strength. J. Mol. Biol. 376: 1451–1462 (2008)

    Article  CAS  Google Scholar 

  25. Toniolo C, Bonora G, Salardi S, Mutter M. Linear oligopeptides. 57. A circular dichroism study of α-helix and β-structure formation in solution by homooligo-L-methionines. Macromolecules 12: 620–625 (1979)

    Article  CAS  Google Scholar 

  26. Combes D, Ye W, Zwick A, Monsan P. Effect of salts on enzyme stability. Ann. NY Acad. Sci. 542: 7–10 (1988)

    Article  CAS  Google Scholar 

  27. Karan R, Khare S. Stability of haloalkaliphilic Geomicrobium sp. protease modulated by salt. Biochemistry-Moscow+ 76: 686–693 (2011)

    Article  CAS  Google Scholar 

  28. Rao L, Zhao X, Pan F, Li Y, Xue Y, Ma Y, Lu JR. Solution behavior and activity of a halophilic esterase under high salt concentration. PloS one 4: e6980 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Bei Zhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Zheng, ZY., Feng, J. et al. Influence of sodium chloride on thermal denaturation of a high-salt-tolerant neutral protease from Aspergillus oryzae . Food Sci Biotechnol 22, 1–7 (2013). https://doi.org/10.1007/s10068-013-0223-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-013-0223-5

Keywords

Navigation