Skip to main content
Log in

Spatial variability of produced-water quality and alternative-source water analysis applied to the Permian Basin, USA

Variabilité spatiale de la qualité de l’eau de production et analyse d’eau de source alternative appliquées au bassin permien, Etats-Unis d’Amérique

Variabilidad espacial de la calidad del agua de producción y análisis de aguas de fuentes alternativas aplicadas en la cuenca del Pérmico, EEUU

美国二叠纪盆地油田采出水水质空间变异性及替代水源分析

Variabilidade espacial da qualidade da água produzida e análise de água de fonte alternativa aplicada à Bacia do Permiano, EUA

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Interest in both environmental impact and potential beneficial uses of produced water (PW) has increased with growth in unconventional oil and gas production, especially in semi-arid regions, e.g. the Permian Basin, the most productive tight-oil region in the USA. Characterization of PW compositional variability is needed to evaluate environmental impact, treatment, and reuse potential. Geochemical variability of PW from Guadalupian (Middle Permian) to Ordovician formations was statistically and geostatistically evaluated in the western half of the Permian Basin (Delaware Basin, Central Basin Platform, and Northwest Shelf) using the US Geological Survey’s Produced Waters Geochemical Database and the New Mexico Water and Infrastructure Data System. Mean total dissolved solids (TDS) of PW increased with depth in the Delaware Basin and Central Basin Platform to the Delaware and Wolfcamp formations (Guadalupian age). Mean TDS decreased with further increases in depth. In contrast, the mean salinity of PW was significantly higher within the shallow, younger formations (largest mean TDS in the Artesia Formation); TDS decreased with depth below Guadalupian age formations in the Northwest Shelf. Kriged contour maps of TDS and major ions illustrated spatial variability across the three geo-structural regions as a function of depth. The occurrence of meteoric waters in upper and deeper formations across the three regions was significant, and was attributed to Laramide Orogeny and Basin and Range extension uplifting and tilting effects and recent water flooding. These results quantify PW composition variability, and suggest that upon treatment, PW would support some uses such as onsite reuse and mining.

Résumé

L’intérêt pour l’impact environnemental et les utilisations bénéfiques potentielles de l’eau de production (EP) a augmenté avec la croissance de la production de pétrole et de gaz non conventionnels, en particulier dans les régions semi-arides, par exemple le bassin permien, la région de pétrole la plus productive aux États-Unis d’Amérique. La caractérisation de la variabilité de la composition de l’EP est nécessaire pour évaluer l’impact environnement, le traitement, et le potentiel de réutilisation. La variabilité géochimique de l’EP des formations du Guadalupien (Permien moyen) à l’Ordovicien a été évaluée à l’aide de la statistique et géostatistique dans la moitié occidentale du bassin permien (Bassin de Delaware, Plateforme de centre du bassin, et plateau nord-ouest) en utilisant la base de données géochimiques des eaux de production du service géologique des Etats-Unis d’Amérique et du système de données sur l’eau et infrastructure du Nouveau Mexique. La valeur moyenne des solides dissous totaux (TDS) de l’EP augmente avec la profondeur dans le bassin du Delaware et la plateforme du bassin central jusqu’aux formations du Delaware et du Wolfcamp (âge Guadalupien). La valeur moyenne de TDS diminue avec d’autres augmentations de la profondeur. En revanche, la salinité moyenne de l’EP est significativement plus élevée dans les formations peu profondes et plus jeunes (la plus grande valeur moyenne de TDS dans la formation d’Artesia); la valeur de TDS diminue avec la profondeur au-delà des formations d’âge guadalupien dans le plateau du Nord-Ouest. Les cartes de contours des TDS et ions majeurs issus du krigeage illustrent la variabilité spatiale entre les trois régions géostructurales en fonction de la profondeur. L’existence d’eaux météoriques dans les formations supérieures et plus profondes dans les trois régions est significative, et est attribué aux effets de l’orogène de Laramide et de surrection et de basculements du bassin et de la chaîne de montagnes, et des récentes inondations. Ces résultats quantifient la variabilité de la composition des EP et suggèrent qu’après traitement, les EP permettraient certaines utilisations comme la réutilisation sur place et pour l’exploitation minière.

Resumen

El interés tanto en el impacto ambiental como en los posibles usos beneficiosos del agua de producción (PW) ha aumentado con el crecimiento de la producción no convencional de petróleo y gas, especialmente en las regiones semiáridas, por ejemplo, la cuenca del Pérmico, la región más productiva de los EE.UU. en la que hay escasez de petróleo. La caracterización de la variabilidad de la composición del PW es necesaria para evaluar el impacto ambiental, el tratamiento y el potencial de reutilización. La variabilidad geoquímica del PW desde las formaciones Guadalupianas (Pérmico Medio) a las formaciones Ordovícicas fue evaluada estadística y geoestadísticamente en la mitad occidental de la Cuenca Pérmica (Delaware Basin, Central Basin Platform, and Northwest Shelf) utilizando la Base de Datos Geoquímicos de Aguas Producidas del Servicio Geológico de los Estados Unidos (US Geological Survey’s Produced Waters Geochemical Database) y el Sistema de Datos de Agua e Infraestructura de Nuevo México (New Mexico Water and Infrastructure Data System). El valor medio de sólidos disueltos totales (TDS) de PW aumentó con la profundidad en la Delaware Basin y en la Central Basin Platform hasta las formaciones Delaware y Wolfcamp (edad Guadalupiana). El valor medio de TDS disminuyó con aumentos adicionales en profundidad. En contraste, la salinidad media de PW fue significativamente mayor en las formaciones más jóvenes y poco profundas (el mayor valor medio de TDS en la Formación Artesia); la TDS disminuyó con la profundidad por debajo de las formaciones de edad Guadalupiana en la Northwest Shelf. Los mapas de contorno krigeados de TDS y de los principales iones ilustraban la variabilidad espacial a través de las tres regiones geoestructurales en función de la profundidad. La ocurrencia de aguas meteóricas en formaciones superiores y más profundas a través de las tres regiones fue significativa, y se atribuyó a la orogenia Laramide y a los efectos de elevación e inclinación de la extensión de la cuenca y la cordillera, así como a las recientes inundaciones. Estos resultados cuantifican la variabilidad de la composición del PW y sugieren que, tras el tratamiento, el PW apoyaría algunos usos, como la reutilización in situ y en la minería.

摘要

随着非常规油气产量的增长, 人们对油田采出水的环境影响和潜在有益用途的兴趣也随之增加了, 特别是在半干旱地区, 例如美国最高产致密油区的二叠纪盆地。为了评估油田采出水的环境影响、处理和再利用的潜力, 需要对其成分的变化情况进行表征。利用美国地质调查局的油田采出水地球化学数据库和新墨西哥的水和基础设施数据系统, 在二叠纪盆地西半部(特拉华盆地、中部盆地台地和西北大陆架)对瓜达卢比(中二叠纪)至奥陶系地层油田采出水的地球化学变化特征进行了统计和地统计学评估。从特拉华盆地和中部盆地台地到特拉华和沃尔夫坎普地层(瓜达卢比时代), 油田采出水的平均总溶解固体(TDS)随深度增加而增加。随着深度的进一步增加, 平均TDS降低。相反, 在较浅, 较年轻的地层中, 油田采出水的平均盐度明显较高(Artesia地层中的最大平均TDS); 架瓜达卢比时代地层以下的TDS随深度的增加而降低。TDS和主要离子的Kriged等高线图可以说明三个地质结构区域随深度的空间变化特征。在这三个区域的上层和深层地层中, 大气降水贡献较大, 这是由于Laramide造山作用、盆地和山脉伸展抬升和倾斜作用以及近期的洪水作用。这些结果量化了油田采出水的组成变化, 并表明经处理后, 油田采出水将可以用于某用途, 如现场的再利用和采矿等。

Resumo

O interesse no impacto ambiental e nos potenciais usos benéficos da água produzida (AP) aumentou com o crescimento da produção não convencional de petróleo e gás, especialmente em regiões semiáridas, p. e. na Bacia do Permiano, a região de petróleo mais produtiva dos EUA. A caracterização da variabilidade composicional de AP é necessária para avaliar o impacto ambiental, o tratamento e o potencial de reutilização. A variabilidade geoquímica de AP das Formações Guadalupiano (Médio Permiano) para Ordoviciano foi avaliada estatisticamente e geoestaticamente na metade ocidental da Bacia do Permiano (Bacia de Delaware, Plataforma Central da Plataforma e Plataforma Noroeste) usando o Banco de Dados Geoquímicos de Águas Produzidas do Serviço Geológico dos EU e o Novo Sistema de dados de água e infraestrutura do México. A média de sólidos dissolvidos totais (SDT) de AP aumentou com a profundidade na Bacia de Delaware e na Plataforma Central da Bacia até as Formações Delaware e Wolfcamp (idade de Guadalupiano). O SDT médio diminuiu com novos aumentos de profundidade. Por outro lado, a salinidade média da AP foi significativamente maior nas formações rasas e mais jovens (maior SDT médio na Formação Artesia); SDT diminuiu com profundidade abaixo da idade das Formações Guadalupiana na Plataforma Noroeste. Os mapas de contorno krigados do SDT e dos íons principais ilustraram a variabilidade espacial nas três regiões geoestruturais em função da profundidade. A ocorrência de águas meteóricas nas formações superiores e mais profundas nas três regiões foi significativa, e foi atribuída à Orogenia de Laramide e aos efeitos de elevação e inclinação da extensão da bacia e da faixa e inundações recentes de água. Esses resultados quantificam a variabilidade da composição da AP e sugerem que, após o tratamento, a AP apoiaria alguns usos, como reuso local e mineração.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmadun FR, Pendashteh A, Abdullah LC, Biak DRA, Madaeni SS, Abidin ZZ (2009) Review of technologies for oil and gas produced water treatment. J Hazard Mater 170:530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044

    Article  Google Scholar 

  • Barnaby RJ, Oetting GC, Gao GQ (2004) Strontium isotopic signatures of oil-field waters: applications for reservoir characterization. AAPG Bull 88:1677–1704. https://doi.org/10.1306/07130404002

    Article  Google Scholar 

  • Bein A, Dutton AR (1993) Origin, distribution, and movement of brine in the Permian Basin (USA): a model for displacement of connate brine. Geol Soc Am Bull 105:695–707. https://doi.org/10.1130/0016-7606(1993)105<0695:odamob>2.3.co;2

    Article  Google Scholar 

  • Blondes MS, Engle MA, Geboy NJ (2015) Advances in integrating isotopic data with compositional data analysis: applications for deep formation brine geochemistry. In: Thio-Henestrosa S, Martin-Fernandez JA (eds) Presented at CoDaWork 2015, Girona, Spain, June 2015, 7 pp

  • Butkovskyi A, Bruning H, Kools SAE, Rijnaarts HHM, Van Wezel AP (2017) Organic pollutants in shale gas flowback and produced waters: identification, potential ecological impact, and implications for treatment strategies. Environ Sci Technol 51:4740–4754. https://doi.org/10.1021/acs.est.6b05640

    Article  Google Scholar 

  • Davidson NJR (2003) Groundwater and produced water quality of the Permian Basin, Southeast New Mexico. MSc, New Mexico Institute of Mining and Technology, Socorro, NM, USA

  • Dutton SF, Kim EM, Broadhead RF, Raatz WD, Breton CL, Ruppel SC, Kerans C (2005) Play analysis and leading-edge oil-reservoir development methods in the Permian Basin: increased recovery through advanced technologies. AAPG Bull 89:553–576. https://doi.org/10.1306/12070404093

    Article  Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V (2005) Groups of parts and their balances in compositional data analysis. Math Geosci 37:795–828

    Google Scholar 

  • Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barcelo-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35:279–300

    Article  Google Scholar 

  • Engle MA, Blondes MS (2014) Linking compositional data analysis with thermodynamic geochemical modeling: Oilfield brines from the Permian Basin, USA. J Geochem Expl 141:61–70

    Article  Google Scholar 

  • Engle MA, Rowan EL (2013) Interpretation of Na-Cl-Br systematics in sedimentary basin brines: comparison of concentration, element ratio, and isometric log-ratio approaches. Math Geosci 45:87–101. https://doi.org/10.1007/s11004-012-9436-z

    Article  Google Scholar 

  • Engle MA, Reyes FR, Varonka MS, Orem WH, Ma L, Ianno AJ, Schell TM, Xu P, Carroll KC (2016) Geochemistry of formation waters from the Wolfcamp and “Cline” shales: insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA. Chem Geol 425:76–92. https://doi.org/10.1016/j.chemgeo.2016.01.025

    Article  Google Scholar 

  • ESRI (2017) ArcGIS desktop. Release 1051, Environmental Systems Research Institute, Redlands, CA

  • Fipps G (2003) Irrigation water quality standards and salinity management. Texas A&M AgriLife Extension Service, College Station, TX

  • Galley JE (1958) Oil and geology in the Permian Basin of Texas and New Mexico: North America. In: Special Paper 18: Habitats of oil. American Association of Petroleum Geology, Tulsa, OK, pp 395-446

  • Geza M, Ma G, Kim H, Cath TY, Xu P (2018) iDST: an integrated decision support tool for treatment and beneficial use of non-traditional water supplies—part I, methodology. J Water Proc Eng 25:236–246

    Article  Google Scholar 

  • Graham EJS, Jakle AC, Martin FD (2015) Reuse of oil and gas produced water in south-eastern New Mexico: resource assessment, treatment processes, and policy. Water Int 40:809–823. https://doi.org/10.1080/02508060.2015.1096126

    Article  Google Scholar 

  • Guerra K, Dahm K, Dundorf S (2011) Oil and gas produced water management and beneficial use in the Western United States. Bureau of Reclamation, Denver, CO

  • Ground Water Protection Council (GWPC) (2019) Produced water report: regulations, current practices, and research needs. http://www.gwpc.org/produced-water-may-provide-relief-declining-water-supplies-areas-us. Accessed September 2019

  • Haluszczak LO, Rose AW, Kump LR (2013) Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA. Appl Geochem 28:55–61. https://doi.org/10.1016/j.apgeochem.2012.10.002

    Article  Google Scholar 

  • Herkelrath WN, Kharaka YK, Thordsen JJ, Abbott MM (2007) Hydrology and subsurface transport of oil-field brine at the US geological survey OSPER site “A”, Osage County, Oklahoma. Appl Geochem 22:2155–2163. https://doi.org/10.1016/j.apgeochem.2007.04.004

    Article  Google Scholar 

  • Horner JE, Castle JW, Rodgers JH (2011) A risk assessment approach to identifying constituents in oilfield produced water for treatment prior to beneficial use. Ecotox Environ Safe 74:989–999. https://doi.org/10.1016/j.ecoenv.2011.01.012

    Article  Google Scholar 

  • Jester S (2013) Cost effective reuse of produced water in the Permian Basin. Oil and Gas Environmental Conference,Dallas, TX,December, 2013

  • Kausley SB, Malhotra CP, Pandit AB (2017) Treatment and reuse of shale gas wastewater: electrocoagulation system for enhanced removal of organic contamination and scale causing divalent cations. J Water Process Eng 16:149–162. https://doi.org/10.1016/j.jwpe.2016.11.003

    Article  Google Scholar 

  • Khan NA, Engle MA, Dungan B, Holguin FO, Xu P, Carroll KC (2016) Volatile-organic molecular characterization of shale-oil produced water from the Permian Basin. Chemosphere 148:126–136

    Article  Google Scholar 

  • Kharaka YK, Hanor JS (2014) Surface and groundwater, weathering and soils, vol 7. In: Treatise on geochemistry, 2nd edn. Elsevier, Amsterdam, pp 471–515

  • Kharaka YK, Kakouros E, Thordsen JJ, Ambats G, Abbott MM (2007) Fate and groundwater impacts of produced water releases at OSPER “B” site, Osage County, Oklahoma. Appl Geochem 22:2164–2176. https://doi.org/10.1016/j.apgeochem.2007.04.005

    Article  Google Scholar 

  • Kondash AJ, Albright E, Vengosh A (2017) Quantity of flowback and produced waters from unconventional oil and gas exploration. Sci Total Environ 574:314–321. https://doi.org/10.1016/j.scitotenv.2016.09.069

    Article  Google Scholar 

  • Lee R, Seright R, Hightower M, Sattler A, Cather M, McPherson B, Wrotenbery L, Martin D, Whitworth M (2002) Strategies for produced water handling in New Mexico. http://www.gwpc.org/sites/default/files/event-sessions/Robert_Lee_PWC2002_0.pdf. Accessed October 2019

  • Longworth JW, Valdez JM, Magnusen ML, Richard K (2013) New Mexico water use by categories 2010. Technical report 54, New Mexico Office of the State Engineer, Santa Fe, NM

  • Ma YZ, Jones TA (2001) Modeling hole-effect variograms of lithology-indicator variables. Math Geol 33:631–648. https://doi.org/10.1023/a:1011001029880

    Article  Google Scholar 

  • Ma G, Geza M, Cath TY, Drewes JE, Xu P (2018) iDST: an integrated decision support tool for treatment and beneficial use of non-traditional water supplies—part II, Marcellus and Barnett Shale case studies. J Water Proc Eng 25:258–268

    Article  Google Scholar 

  • Matchus EJ, Jones TS (1984) East–West Cross Section Through Permian Basin of West Texas. West Texas Geological Society, Publication No. 84–79, 1 sheet

  • Maupin MA, Kenny JF, Hutson SS, Lovelace JK, Barber NL, Linsey KS (2014) Estimated use of water in the United States in 2010: US Geological Survey Circ 1405, 56 pp. https://doi.org/10.3133/cir1405. Accessed September 2019

  • McMahon PB, Bohlke JK, Dahm KG, Parkhurst DL, Anning DW, Stanton JS (2016) Chemical considerations for an updated national assessment of brackish groundwater resources. Groundwater 54:464–475. https://doi.org/10.1111/gwat.12367

    Article  Google Scholar 

  • McNeal RP (1965) Hydrodynamics of the Permian Basin. In: Young A, Galley JE (ed) Fluids in subsurface environments. AAPG Memoir 4, AAPG, Tulsa, OK, pp 308–326

  • Nicot JP, Scanlon BR (2012) Water use for shale-gas production in Texas, US. Environ Sci Technol 46:3580–3586. https://doi.org/10.1021/es204602t

    Article  Google Scholar 

  • OCD (2015) The New Mexico Natural Resources report. Energy, Minerals, and Natural Resources Dept., Santa Fe, NM

  • Ostroff AG (1979) Introduction to oilfield water technology. National Association of Corrosion Engineers, Houston, TX

  • Otton JK, Zielinski RA, Smith BD, Abbott MM (2007) Geologic controls on movement of produced-water releases at US Geological Survey research site a, Skiatook lake, Osage county, Oklahoma. Appl Geochem 22:2138–2154. https://doi.org/10.1016/j.apgeochem.2007.04.015

    Article  Google Scholar 

  • Owen DD, Pawlowsky-Glahn V, Egozcue JJ, Buccianti A, Bradd JM (2016) Compositional data analysis as a robust tool to delineate hydrochemical facies within and between gas-bearing aquifers. Water Resour Res 52:5771–5793. https://doi.org/10.1002/2015wr018386

    Article  Google Scholar 

  • Pfister S, Capo RC, Stewart BW, Macpherson GL, Phan TT, Gardiner JB, Diehl JR, Lopano CL, Hakala JA (2017) Geochemical and lithium isotope tracking of dissolved solid sources in Permian Basin carbonate reservoir and overlying aquifer waters at an enhanced oil recovery site, Northwest Texas, USA. Appl Geochem 87:122–135. https://doi.org/10.1016/j.apgeochem.2017.10.013

    Article  Google Scholar 

  • Reyes FR, Engle MA, Jin L, Jacobs MA, Konter JG (2018) Hydrogeochemical controls on brackish groundwater and its suitability for use in hydraulic fracturing: the Dockum aquifer, Midland Basin, Texas. Environ Geosci 25:37–63. https://doi.org/10.1306/eg.01241817017

    Article  Google Scholar 

  • Saller AH, Stueber AM (2018) Evolution of formation waters in the Permian Basin, United States: Late Permian evaporated seawater to Neogene meteoric water. AAPG Bull 102:401–428. https://doi.org/10.1306/0504171612517157

    Article  Google Scholar 

  • Scanlon BR, Reedy RC, Male F, Walsh M (2017) Water issues related to transitioning from conventional to unconventional oil production in the Permian Basin. Environ Sci Technol 51:10903–10912. https://doi.org/10.1021/acs.est.7b02185

    Article  Google Scholar 

  • Senger RK, Fogg GE (1987) Regional underpressuring in deep brine aquifers, Palo-Duro basin, Texas, 1: effects of hydrostratigraphy and topography. Water Resour Res 23:1481–1493. https://doi.org/10.1029/WR023i008p01481

    Article  Google Scholar 

  • Siegel MD, Anderholm S (1994) Geochemical evolution of groundwater in the Culebra dolomite near the waste isolation pilot plant, southeastern New Mexico, USA. Geochim Cosmochim Acta 58:2299–2323

    Article  Google Scholar 

  • Stanton JS, Anning DW, Brown CJ, Moore RB, McGuire VL, Qi SL, Harris AC, Dennehy KF, McMahon PB, Degnan JR, Böhlke JK (2017) Brackish groundwater in the United States. US Geol Surv Prof Pap 1833, 185 pp

  • Stanton JS, Dennehy KF (2017) Brackish groundwater and its potential to augment freshwater supplies. US Geol Surv Fact Sheet 2017–3054:4

  • USEPA (2017) The FY 2016-2017 National Water Program Guidance. US Environmental Protection Agency. https://www.epa.gov/sites/production/files/2015-04/documents/2016-2017_nwpg_final.pdf. Accessed September 2019

  • USEIA (2017) US Energy Information Administration drilling productivity report. http://www.eia.gov/petroleum/drilling/. Accessed May 17, 2017

  • Veil J, Puder M, Elcock D, Redweik Jr. R (2004) A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. National Energy Technology Laboratory, Pittsburgh, PA

  • Willet JC (2004) Potash. US Geological Survey minerals yearbook. US Geological Survey, Reston, VA

  • Xu P, Ma G, Stoll Z (2016) Assessment of treatment technologies for produced water to improve water supply sustainability in southeastern New Mexico. New Mexico Water Resources Research Institute, Las Cruces, NM

  • Zemlick K, Kalhor E, Thomson BM, Chermak JM, Graham EJS, Tidwell VC (2018) Mapping the energy footprint of produced water management in New Mexico. Environ Res Lett 13:11. https://doi.org/10.1088/1748-9326/aa9e54

    Article  Google Scholar 

  • Zielinski RA, Budahn JR (2007) Mode of occurrence and environmental mobility of oil-field radioactive material at US Geological Survey research site B, Osage-Skiatook project, northeastern Oklahoma. Appl Geochem 22:2125–2137. https://doi.org/10.1016/j.apgeochem.2007.04.014

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to New Mexico Water Resources Research Institute, Sam Fernald, Martha Cather, and Naima A. Khan for their support. We thank Jennifer Stanton (USGS), the anonymous reviewers, the associate editor, and the editor for their comments, which were appreciated, constructive, helpful, and improved the clarity of this work.

Funding

The authors would like to thank the New Mexico Environment Division and the New Mexico Water Research Institute for financial support to complete this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth C. Carroll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, B.K., Sabie, R., Engle, M.A. et al. Spatial variability of produced-water quality and alternative-source water analysis applied to the Permian Basin, USA. Hydrogeol J 27, 2889–2905 (2019). https://doi.org/10.1007/s10040-019-02054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02054-4

Keywords

Navigation