Skip to main content

Advertisement

Log in

Granular object morphological generation with genetic algorithms for discrete element simulations

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The Discrete Element Method is a popular method for modeling granular materials, however, it is typically limited to geometrically simple objects. A recent extension of this method, the Level Set Discrete Element Method (LS-DEM), overcomes this issue by allowing the use of any particle shape, including morphologically accurate computational grains generated from tomographic images. This method has the ability to provide insight into the physics of granular media that are challenging if granular shape morphology is not accurately represented. One challenge with fully utilizing LS-DEM is gathering the data necessary to reproduce the distinct shapes of grains. In this work, we develop a novel granular generation method that uses genetic algorithms to create new computational grains from a smaller set of input data. This method has the capability of building grains that match any well defined morphological property. We demonstrate the method by generating grains to match sphericity and principal curvature property distributions generated from an existing particle dataset captured with 3D X-Ray tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating jets. Comput. Aided Geometric Des. 22(2), 121–146, (2005). ISSN 0167-8396. https://doi.org/10.1016/j.cagd.2004.09.004. URL http://www.sciencedirect.com/science/article/pii/S016783960400113X. Accessed 15 Jan 2017

    Article  MathSciNet  Google Scholar 

  2. Cho, G.-C., Dodds, J., Santamarina, J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006)

    Article  Google Scholar 

  3. Cil, M.B., Alshibli, K.A.: 3d assessment of fracture of sand particles using discrete element method. Geotech. Lett. 2(3), 161–166 (2012). https://doi.org/10.1680/geolett.12.00024

    Article  Google Scholar 

  4. Cobo, A.X.J.: Microscopic origin of macroscopic strength in granular media: a numerical and analytical approach. PhD thesis, California Institute of Technology, 4 (2016)

  5. Cundall, P.: Formulation of a three-dimensional distinct element model-part i. a scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. Mini. Sci. Geomech. Abstr. 25(3), 107–116, (1988). ISSN 0148-9062. https://doi.org/10.1016/0148-9062(88)92293-0. URL http://www.sciencedirect.com/science/article/pii/0148906288922930. Accessed 15 Jan 2017

    Article  Google Scholar 

  6. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  7. De Jong, K.: Learning with genetic algorithms: an overview. Mach. Learn. 3(2), 121–138 (1988). https://doi.org/10.1007/BF00113894

    Article  Google Scholar 

  8. De Rainville, F.-M., Fortin, F.-A., Gardner, M.-A., Parizeau, M., Gagné, C.: Deap: A python framework for evolutionary algorithms. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO ’12, pp. 85–92, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1178-6. https://doi.org/10.1145/2330784.2330799

  9. Fabri, A., Pion, S.: Cgal: The computational geometry algorithms library. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS ’09, pages 538–539, New York, NY, USA, (2009). ACM. ISBN 978-1-60558-649-6. https://doi.org/10.1145/1653771.1653865

  10. Guo, P., Su, X.: Shear strength, interparticle locking, and dilatancy of granular materials. Can. Geotech. J. 44(5), 579–591 (2007). https://doi.org/10.1139/t07-010

    Article  Google Scholar 

  11. Hyslip, J.P., Vallejo, L.E.: Fractal analysis of the roughness and size distribution of granular materials. Eng. Geol. 48(3-4), 231–244, (1997). ISSN 0013-7952. https://doi.org/10.1016/S0013-7952(97)00046-X. URL http://www.sciencedirect.com/science/article/pii/S001379529700046X. Fractals in Engineering Geology. Accessed 15 Jan 2017

    Article  Google Scholar 

  12. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: Level set discrete element method for three-dimensional computations with triaxial case study. J. Mech. Phys. Solids 91, 1–13 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kruggel-Emden, H., Simsek, E., Rickelt, S., Wirtz, S., Scherer, V.: Review and extension of normal force models for the discrete element method. Powder Technol. 171(3), 157–173, (2007). ISSN 0032-5910. https://doi.org/10.1016/j.powtec.2006.10.004. URL http://www.sciencedirect.com/science/article/pii/S0032591006004360. Accessed 15 Jan 2017

    Article  Google Scholar 

  14. Lim, K.-W., Krabbenhoft, K., Andrade, J.E.: On the contact treatment of non-convex particles in the granular element method. Comput. Part. Mech. 1(3), 257–275 (2014). https://doi.org/10.1007/s40571-014-0019-2

    Article  Google Scholar 

  15. Neil, B., Russ, J.: Measuring Shape. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  16. Riley, H.B.: Mathematical Methods for Physics and Engineering. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  17. Sperl, M.: Experiments on corn pressure in silo cells—translation and comment of janssen’s paper from: Granular Matter, 8(2), 59–65, (2006). ISSN 1434–7636, (1895). https://doi.org/10.1007/s10035-005-0224-z

    Article  Google Scholar 

  18. Vu-Quoc, L., Zhang, X., Walton, O.: A 3-d discrete-element method for dry granular flows of ellipsoidal particles. Comput. Methods Appl. Mech. Eng. 187(3), 483–528, (2000). ISSN 0045-7825. https://doi.org/10.1016/S0045-7825(99)00337-0

    Article  ADS  Google Scholar 

  19. Wadell, H.: Volume, shape, and roundness of quartz particles. J. Geol. 43(3), 250–280, (1935). ISSN 00221376, 15375269. URL http://www.jstor.org/stable/30056250. Accessed 15 Jan 2017

    Article  ADS  Google Scholar 

  20. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1), 37–52, (1987). ISSN 0169-7439. https://doi.org/10.1016/0169-7439(87)80084-9. URL http://www.sciencedirect.com/science/article/pii/0169743987800849. Accessed 15 Jan 2017

    Article  Google Scholar 

  21. Zhao, B., Wang, J.: 3d quantitative shape analysis on form, roundness, and compactness with \(\mu CT\). Powder Technol. 291, 262–275, (2016). ISSN 0032-5910. https://doi.org/10.1016/j.powtec.2015.12.029. URL http://www.sciencedirect.com/science/article/pii/S0032591015302345. Accessed 20 July 2018

    Article  Google Scholar 

  22. Zhou, B., Wang, J.: Generation of a realistic 3d sand assembly using x-ray micro-computed tomography and spherical harmonic-based principal component analysis. Int. J. Numer. Analy. Methods Geomech. (2016). ISSN 1096-9853. https://doi.org/10.1002/nag.2548

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research was sponsored by the Army Research Office and was accomplished under Grant Number W911NF-17-1-0212. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Andrade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buarque de Macedo, R., Marshall, J.P. & Andrade, J.E. Granular object morphological generation with genetic algorithms for discrete element simulations. Granular Matter 20, 73 (2018). https://doi.org/10.1007/s10035-018-0845-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0845-7

Keywords

Navigation