Skip to main content
Log in

Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents the results of a comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials using the discrete element method. The study used the Particle Flow Code (PFC) to simulate biaxial compression tests in granular materials. To study the effects of rolling resistance, a user-defined rolling resistance model was implemented in PFC. A series of parametric studies was performed to investigate the effects of different levels of rolling resistance on the stress–strain response and the emergence and development of shear bands in granular materials. The PFC models were also tested under a range of macro-mechanical parameters and boundary conditions. It is shown that rolling resistance affects the elastic, shear strength and dilation response of granular materials, and new relationships between rolling resistance and macroscopic elasticity, shear strength and dilation parameters are presented. It is also concluded that the rolling resistance has significant effects on the orientation, thickness and the timing of the occurrence of shear bands. The results reinforce prior conclusions by Oda et al. (Mech Mater 1:269–283, 1982) on the importance of rolling resistance in promoting shear band formation in granular materials. It is shown that increased rolling resistance results in the development of columns of particles in granular materials during strain hardening process. The buckling of these columns of particles in narrow zones then leads to the development of shear bands. High gradients of particle rotation and large voids are produced within the shear band as a result of the buckling of the columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oda M., Konishi J., Nemat-Nasser S.: Experimental micromechanical evolution of strength of granular materials: effects of particle rolling. Mech. Mater. 1, 269–283 (1982)

    Article  Google Scholar 

  2. Cundall, P.A.: A discrete numerical model for granular assemblies. In: Proceedings of ISRM Symposium, vol. 2, pp. 129–136. Nancy, France (1971)

  3. Cundall P.A., Strack O.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  4. Bardet, J.P., Proubet, J.: Numerical simulation of localization in granular materials. In: Proceedings of EMD/ASCE Conference, pp. 1269–1273. Columbus, Ohio (1991)

  5. Iwashita K., Oda M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Tech. 109, 192–205 (2000)

    Article  Google Scholar 

  6. Hu N., Molinari J.F.: Shear bands in dense metallic granular materials. J. Mech. Phys. Solids 52, 499–531 (2004)

    Article  MATH  ADS  Google Scholar 

  7. Gardiner B., Tordesillas A.: Micromechanics of shear bands. Int. J. Solids Struct. 41, 5885–5901 (2004)

    Article  MATH  Google Scholar 

  8. Mandel, J.: Conditions de stabilité et postulat de Drucker. In: Proceedings of IUTAM Symposium on Rheology and Soil Mechanics, pp. 58–68 (1966)

  9. Rudnicki J.W., Rice J.R.: Conditions for the localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23, 371–394 (1975)

    Article  ADS  Google Scholar 

  10. Vardoulakis I.: Equilibrium theory of shear bands in plastic bodies. Mech. Res. Comm. 3, 209–214 (1976)

    Article  MATH  Google Scholar 

  11. Newland P.L, Allely B.H.: Volume changes in drained triaxial tests on granular materials. Géotechnique 7(1), 17–34 (1957)

    Article  Google Scholar 

  12. Rowe P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. Ser. A 269, 500–527 (1962)

    Article  ADS  Google Scholar 

  13. Schofield A., Wroth C.P.: Critical State Soil Mechanics. McGraw-Hill, London (1967)

    Google Scholar 

  14. Mitchell J.K.: Fundamentals of Soil Behavior. Willey, New York (1976)

    Google Scholar 

  15. Jiang M.J., Haris D.A.: Novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Article  Google Scholar 

  16. Bardet J.P.: Observations on the effects of particle rotations on the failure of idealized granular materials. Mech. Mater. 18, 159–182 (1994)

    Article  Google Scholar 

  17. Wang, J.F., Gutierrez, M., Dove, J.E.: Effect of particle rolling resistance on interface shear behavior. In: Proceedings of 17th ASCE Engineering Mechanics Conference, pp. 56–63 (2004)

  18. Oda M., Iwashita K.: Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci. 38(15), 1713–1740 (2000)

    Article  Google Scholar 

  19. Bardet J.P., Proubet J.: The structure of shear bands in idealized granular materials. Appl. Mech. Rev. 45(3), 118–122 (1992)

    Article  Google Scholar 

  20. Oda M., Kazama H., Konishi J.: Effects of induced anisotropy on the development of shear bands in granular materials. Mech. Mater. 28(1-4), 103–111 (1998)

    Article  Google Scholar 

  21. Oda M., Kazama H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(1-4), 465 (1998)

    Google Scholar 

  22. Tordesillas A., Shi J.: Micromechanical analysis of failure propagation in frictional granular materials. Int. J. Numer. Anal. Method Geomech. 33, 1737–1768 (2009)

    Article  Google Scholar 

  23. Itasca Consulting Group.: Particle Flow Code in 2D (PFC-2D): User’s Manual, Version 4.0. Minneapolis, Minnesota (2008)

  24. Bardet, J.P., Huang, Q.: Rotational stiffness of cylindrical particle contacts. In: Proceedings of Powders and Grains Conference, pp. 39–43 (1993)

  25. Iwashita K., Oda M.J.: Rolling resistance at contacts in the simulation of shear band development by DEM. J. Eng. Mech. 124(3), 285–292 (1998)

    Article  Google Scholar 

  26. Sakaguchi H., Ozaki E., Igarashi T.: Plugging of the flow of granular materials during discharge from a silo. Int. J. Mod. Phys B 7(9–10), 1949–1963 (1993)

    Article  ADS  Google Scholar 

  27. Jiang M.J., Yu H.-S., Harris D.: Kinematic variables bridging discrete and continuum granular mechanics. Mech. Res. Comm. 33, 651–666 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jiang M.J., Leroueil S., Zhu H.-H., Yu H.-S., Konrad J.M.: Two-dimensional discrete element theory for rough particles. Int. J. Geomech. ASCE. 9(1), 20–33 (2009)

    Article  Google Scholar 

  29. Jiang M.J., Yu H.-S., Harris D.: Bond rolling resistance and its effect on yielding of bonded granulates by DEM analyses. Int. J. Numer. Anal. Method Geomech. 30(7), 723–761 (2006)

    Article  Google Scholar 

  30. Luding S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10(4), 235–246 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Bartels G., Unger T., Kadau D., Wolf D.E., Kertesz J.: The effect of contact torques on porosity of cohesive powders. Granul. Matter 7(3), 139–143 (2005)

    Article  MATH  Google Scholar 

  32. Wang Y.C., Alonso-Marroquin F.: A finite deformation method for discrete modeling: particle rotation and parameter calibration. Granul. Matter 11(5), 331–343 (2009)

    Article  Google Scholar 

  33. Ng T.T.: Input parameters of discrete element methods. J. Eng. Mech. 132(7), 723–729 (2006)

    Article  Google Scholar 

  34. Bathurst B.J., Rothenburg L.: Note on a random isotropic granular materials with negative Poisson’s ratio. Int. J. Eng. Sci. 26(4), 373–383 (1988)

    Article  MATH  Google Scholar 

  35. Tordesillas A.: Force chain buckles, unjamming transitions and shear banding in dense granular materials. Philos. Mag. 87, 4987–5016 (2007)

    Article  ADS  Google Scholar 

  36. Wang Q., Lade P.V.: Shear banding in true triaxial tests and its effect on failure in sand. J. Eng. Mech. 127(8), 754–761 (2001)

    Article  Google Scholar 

  37. Roscoe K.H.: The influence of strain in soil mechanics. Géotechnique 20(2), 129–170 (1970)

    Article  Google Scholar 

  38. Arthur J., Dunstan T., Al-Ani Q., Assadi A.: Plastic deformation and failure in granular media. Geotechnique 27(1), 53–74 (1977)

    Article  Google Scholar 

  39. Vardoulakis I.: Shear band inclination and shear modulus of sand in biaxial tests. Int. J. Numer. Anal. Methods Geomech. 4(2), 103–119 (1980)

    Article  MATH  Google Scholar 

  40. Muhlhaus H.B., Vardoulakis I.: The thickness of shear bands in granular materials. Geotechnique 37, 271–283 (1987)

    Article  Google Scholar 

  41. Tordesillas A., Peters J.F., Muthuswamy M.: Role of particle rotations and rolling resistance in a semi-infinite particulate solid indented by a rigid flat punch. ANZIAM J. 46, 260–275 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marte Gutierrez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, A., Gutierrez, M. Comprehensive study of the effects of rolling resistance on the stress–strain and strain localization behavior of granular materials. Granular Matter 12, 527–541 (2010). https://doi.org/10.1007/s10035-010-0211-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0211-x

Keywords

Navigation