Skip to main content
Log in

Simulation of granular flow in a fluid applied to sedimentation

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We present a numerical model applied to the simulation of granular flow in a fluid. The description of particle flow is discrete. Particle trajectories are calculated by Newton's law and collisions are described by a soft-sphere approach. The fluid flow is modelled using the Navier-Stokes equation. The momentum transfer is directly calculated from the stress tensor around particles. This model is validated through the calculation of the drag coefficient, making it possible to discern the limitations on the Reynolds number according to the mesh size and the computational time. The accuracy of the Navier-Stokes solver is estimated by the calculation of the hydrodynamic drag of a fluid flowing through a porous media at low Reynolds numbers. The analysis shows that dense media require a smaller mesh size than diluted media. This model is then used to describe the sedimentation of two particles to reproduce the ''Draft, Kiss and Tumbled'' effect. This shows the capacity of the model to reproduce hydrodynamic interactions acting on the scale of the particle. The terminal velocity of particles is in good agreement with experiments. Simulations of the sedimentation of a system of particles makes it possible to recover the Richardson and Zaki law in an acceptable CPU time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balzer, G., Boëlle, A., Simonin, O.: ISEF Fluidisation VIII, Tours, 1125 (1995)

  2. Boëlle, A.: Thèse de doctorat. Université de Paris 6 (1997)

  3. Ferschneider, G., Mège P.: Revue de l'IFP 51, 2 (1996)

    Google Scholar 

  4. Simonin, O.: 5th Workshop on two phase flow predictions, 19-22-03/90, Erlangen RFA

  5. Soo, S.: (1996) Fluid dynamics of multiphase systems (Baisdell Publishing Co. (1967)

  6. Ergun, S.: Chemical engineering progress. 48, 2 (1952)

  7. Hu, H.H., Crochet, M.J., Joseph, D.D.: AHPCRC Preprint 91–45 (1991)

  8. Hu, H.H., Joseph, D.D., Fortes, A.F.: Int. Video J. of Eng. Research 2 (1992)

  9. Glowinski, R., Pan, T.W., Periaux, J.: Fictitious domain methods for the simulation of stokes flow past a moving disk, personal communication (1996)

  10. Glowinski, R., Pan, T.W., Hesla, T.I., Joseph, D.D., Periaux, J.: J.Comput. Phys. 169 (2001)

  11. Xu, B.H., Yu, A.B., Chew, S.J., Zulli, P.: Numerical simulation of the gas-solid flow in a bed with lateral gas blasting. Powder Technology 109, 109, 13 (2000)

    Google Scholar 

  12. Hoomans, B.P.B., Kuipers, J.A.M, Briels, W.J., Van Swaaij, W.P.M.: Chem. Engng. Sci. 51 (1996)

  13. Kalthoff, W., Schwarzer, S., Ristow, G.H., Herrmann, H.J.: Int. J. Mod. Phys. C 7, 4 (1996)

    Google Scholar 

  14. Schwarzer, S.: Phys. Rev. E 52, 6461 (1995)

    Google Scholar 

  15. Tsuji, Y., Tanaka, T.: Int. J. Mod. Phys. B 7, 9–10 (1993)

    Google Scholar 

  16. Tsuji, Y., Kawaguchi, T., Tanaka, T.: Powder technology 77 (1993)

  17. Kawaguchi, T., Tanaka, T., Tsuji, Y.: Powder technology 20 (1997)

  18. Tanaka, T., Kawaguchi, T., Tsuji, Y.: Int. J. Mod. Phys. B 7 (1993)

  19. Xu, B.H., Yu, A.B.: Chem. Engng. Sci. 52, 16 (1997)

    Google Scholar 

  20. Komnik, A., Harting, J., Herrmann, H.J.: Journal of statistical mechanics: theory and experiment (2004)

  21. Ladd, A.J.C.: J. Fluid Mech. 271 (1994)

  22. Ladd, A.J.C., Verberg, R.: J. Stat. Phys. 104 (2001)

  23. Höfler, K., Räumliche Simulation von Zweiphasenflüssen, Master's thesis, Universität Stuttgart, (1997)

  24. Fogelson, A.L., Peskin, C.S.: J. Comput. Phys. 79, 50 (1988)

    Google Scholar 

  25. Wachmann, B.: Microsimulation of Two-Phase System in 3D, Doctoral Thesis (1999), University of Stuttgart

  26. Komiwes, V., Herrmann, H.J., Mège, Ph., Meimon, Y.: Direct Simulation of Granular Flow with Fluid, session 20 Granular Materials of the joint Conferences EPS: 17th Meeting of the Consensed matter division SFP: 6eme Journées de la Matière Condensée - Grenoble (France) (August 25th - 28th) (1998)

  27. Fonseca, F., Herrmann, H.J.: Simulation of the sedimentation of a falling oblate ellipsoid. Physica A 345, 341–355 (2005)

    Google Scholar 

  28. Fonseca, F., Herrmann, H.J.: Sedimentation of oblate ellipsoids at low and moderate Reynolds numbers. Physica A 342, 447–461 (2004)

    Google Scholar 

  29. Cundall, P.A., Strack, O.D.L.: Geotechnique 29, 47 (1979)

  30. Ristow, G.: Int. J. of Mod. Phys. C 3, 6 (1992)

    Google Scholar 

  31. Herrmann, H.J.: J. Phys. A 26, 373 (1993)

    Google Scholar 

  32. Form, W., Ito, N., Kohring, G.A.: Int. J. of Mod. Phys. C 4, 6 (1993)

    Google Scholar 

  33. Allen, M.P., Tildesley, D.J.: Computer simulation of liquids. Oxford: Oxford University Press, 1987

  34. Landau, L.D., Lifschitz, E.M.: Hydrodynamik, Vol. 6 of Lehrbuch der Theoretischen Physik, 5th ed., Akademie-Verlag, Berlin, (1991)

  35. Chorin, A.J.: J. of Comput. Phys. 2 (1967)

  36. Peyret, R., Taylor, T.D.: Computational methods for fluid flow. Springer Series in Computational Physics, Springer (1983)

  37. Vorst, H.A.V.D.: Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM. J. Sci. Statist. Comput. 13, (1992)

  38. Schiller, V.L., Naumann, A.: Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Ver. Dtsch. Ing. 77

  39. Sangani, A., Acrivos, A.: Int. J. Multiphase Flow 8, 193 (1982)

    Google Scholar 

  40. Ladd, A.J.C.: J. Chem. Phys. 88, 5051 (1988)

    Google Scholar 

  41. Richardson, J.F., Zaki, W.N.: Trans. Instn. Chem. Engrs. 32 (1954)

  42. Nicolai, H., Herzhaft, B., Hinch, E.J., Oger, L., Guazzelli, E.: Phys. Fluid 7 (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Komiwes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komiwes, V., Mege, P., Meimon, Y. et al. Simulation of granular flow in a fluid applied to sedimentation. Granular Matter 8, 41–54 (2006). https://doi.org/10.1007/s10035-005-0220-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-005-0220-3

Keywords

Navigation