Skip to main content

Advertisement

Log in

Effect of Drought-Induced Salinization on Wetland Methane Emissions, Gross Ecosystem Productivity, and Their Interactions

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Salinity gradients across estuaries influence wetland carbon storage, methane (CH4) biogeochemistry, and plant productivity. Estuarine freshwater wetlands may experience increases in salinity during drought; however, the impact of salinization on greenhouse gas (GHG) emissions is uncertain. We measured ecosystem-scale GHG emissions from a wetland experiencing salinization during the 2011–2017 California drought and used information theory analyses to quantify couplings and causal interactions between CH4 fluxes and two dominant environmental drivers; gross ecosystem photosynthesis and temperature. Machine learning models were then used to estimate salinization-induced changes in CH4 fluxes and plant productivity. We observed dynamic CH4 flux-driver relationships across the salinization disturbance event, where temperature connections strengthened, and productivity connections dampened during salinization. Annual gross ecosystem productivity reduced by 64% during peak salinization, whereas annual CH4 emissions only reduced by 10%, suggesting that other CH4 substrate sources compensated for reductions in recent photosynthate. Our results demonstrate the value of applying information theory and machine learning approaches to ecological analyses and suggest that drought-induced salinization may increase GHG emissions from estuarine freshwater wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Albert LP, Keenan TF, Burns SP, Huxman TE, Monson RK. 2017. Climate controls over ecosystem metabolism: Insights from a fifteen-year inductive artificial neural network synthesis for a subalpine forest. Oecologia 184:25–41.

    PubMed  Google Scholar 

  • Ardón M, Helton AM, Bernhardt ES. 2016. Drought and saltwater incursion synergistically reduce dissolved organic carbon export from coastal freshwater wetlands. Biogeochemistry 127:411–26.

    Google Scholar 

  • Auguie B. 2016. GridExtra: Miscellaneous functions for ‘grid’ graphics. https://CRAN.R-project.org/package=gridExtra

  • Baldocchi D. 2014. Measuring fluxes of trace gases and energy between ecosystems and the atmosphere—the state and future of the eddy covariance method. Glob Change Biol 20:3600–9.

    Google Scholar 

  • Baldocchi D, Sturtevant C, Contributors F. 2015. Does day and night sampling reduce spurious correlation between canopy photosynthesis and ecosystem respiration? Agr Forest Meteorol 207:117–26.

    Google Scholar 

  • Barnett L, Barrett AB, Seth AK. 2009. Granger causality and transfer entropy are equivalent for Gaussian variables. Phys Rev Lett 103:1–10.

    Google Scholar 

  • Beare PA, Zedler JB. 1987. Cattail invasion and persistence in a coastal salt marsh: The role of salinity reduction. Estuaries 10:165–70.

    Google Scholar 

  • Breiman L. 2001. Random forests. Machine Learning 45:5–32.

    Google Scholar 

  • Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q. 2013. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Change Biol 19:1325–46.

    Google Scholar 

  • Chamberlain SD, Anthony TL, Silver WL, Eichelmann E, Hemes KS, Oikawa PY, Sturtevant C, Szutu DJ, Verfaillie JG, Baldocchi DD. 2018. Soil properties and sediment accretion modulate methane fluxes from restored wetlands. Glob Change Biol 00:1–15.

    Google Scholar 

  • Chamberlain SD, Verfaillie J, Eichelmann E, Hemes KS, Baldocchi DD. 2017. Evaluation of density corrections to methane fluxes measured by open-path eddy covariance over contrasting landscapes. Bound-Lay Meteorol 165:197–210.

    Google Scholar 

  • Chambers LG, Osborne TZ, Reddy KR. 2013. Effect of salinity-altering pulsing events on soil organic carbon loss along an intertidal wetland gradient: A laboratory experiment. Biogeochemistry 115:363–83.

    CAS  Google Scholar 

  • Chu H, Baldocchi DD, John R, Wolf S, Reichstein M. 2017. Fluxes all of the time? A primer on the temporal representativeness of FLUXNET. J Geophy Res Biogeosci 122:289–307.

    Google Scholar 

  • Detto M, Molini A, Katul G, Stoy P, Palmroth S, Baldocchi D. 2012. Causality and persistence in ecological systems: A nonparametric spectral granger causality approach. Am Nat 179:524–35.

    PubMed  Google Scholar 

  • Deverel S, Jacobs P, Lucero C, Dore S, Kelsey TR. 2017. Implications for greenhouse gas emission reductions and economics of a changing agricultural mosaic in the Sacramento–San Joaquin Delta. San Francisco Estuary and Watershed Science 15.

  • Deverel SJ, Leighton DA. 2010. Historic, recent, and future subsidence, Sacramento-San Joaquin Delta, California. USA: San Francisco Estuary and Watershed Science. p 8.

    Google Scholar 

  • van Dijk G, Smolders AJP, Loeb R, Bout A, Roelofs JGM, Lamers LPM. 2015. Salinization of coastal freshwater wetlands; effects of constant versus fluctuating salinity on sediment biogeochemistry. Biogeochemistry 126:71–84.

    Google Scholar 

  • Eichelmann E, Hemes KS, Knox SH, Oikawa PY, Chamberlain SD, Sturtevant C, Verfaillie J, Baldocchi DD. 2018. The effect of land cover type and structure on evapotranspiration from agricultural and wetland sites in the Sacramento-San Joaquin River Delta, California. Agr Forest Meteorol 256–257:179–95.

    Google Scholar 

  • Enright C, Culberson SD. 2009. Salinity trends, variability, and control in the northern reach of the San Francisco Estuary. San Francisco Estuary and Watershed Science 7.

  • Feldman DR, Collins WD, Biraud SC, Risser MD, Turner DD, Gero PJ, Tadić J, Helmig D, Xie S, Mlawer EJ, Shippert TR, Torn MS. 2018. Observationally derived rise in methane surface forcing mediated by water vapour trends. Nat Geosci 11:238–43.

    CAS  Google Scholar 

  • Fofonoff NP, Millard RC. 1983. Algorithms for computation of fundamental properties of seawater. UNESCO R M 44.

  • Getz WM, Marshall CR, Carlson CJ, Giuggioli L, Ryan SJ, Romañach SS, Boettiger C, Chamberlain SD, Larsen L, D’Odorico P, O’Sullivan D, Coulson T. 2017. Making ecological models adequate. Ecol Lett 21:153–66.

    PubMed  Google Scholar 

  • Glenn E, Thompson TL, Frye R, Riley J, Baumgartner D. 1995. Effects of salinity on growth and evapotranspiration of Typha domingensis Pers. Aquat Bot 52:75–91.

    Google Scholar 

  • Griscom BW, Adams J, Ellis PW, Houghton RA, Lomax G, Miteva DA, Schlesinger WH, Shoch D, Siikamäki JV, Smith P, Woodbury P, Zganjar C, Blackman A, Campari J, Conant RT, Delgado C, Elias P, Gopalakrishna T, Hamsik MR, Herrero M, Kiesecker J, Landis E, Laestadius L, Leavitt SM, Minnemeyer S, Polasky S, Potapov P, Putz FE, Sanderman J, Silvius M, Wollenberg E, Fargione J. 2017. Natural climate solutions. PNAS 114:11645–50.

    CAS  PubMed  Google Scholar 

  • Grolemund G, Wickham H. 2011. Dates and times made easy with lubridate. Journal of Statistical Software 40:1–25. http://www.jstatsoft.org/v40/i03/

  • Hampton SE, Strasser CA, Tewksbury JJ, Gram WK, Budden AE, Batcheller AL, Duke CS, Porter JH. 2013. Big data and the future of ecology. Front Ecol Environ 11:156–62.

    Google Scholar 

  • Hatala JA, Detto M, Baldocchi DD. 2012a. Gross ecosystem photosynthesis causes a diurnal pattern in methane emission from rice. Geophys Res Lett 39:L06409.

    Google Scholar 

  • Hatala JA, Detto M, Sonnentag O, Deverel SJ, Verfaillie J, Baldocchi DD. 2012b. Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agr Ecosyst Environ 150:1–18.

    CAS  Google Scholar 

  • Hausser J, Strimmer K. 2014. Entropy: Estimation of entropy, mutual information and related quantities. https://CRAN.R-project.org/package=entropy

  • Hemes KS, Chamberlain SD, Eichelmann E, Knox SH, Baldocchi DD. 2018. A biogeochemical compromise: The high methane cost of sequestering carbon in restored wetlands. Geophys Res Lett 45:6081–91.

    CAS  Google Scholar 

  • Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, Ardón M, Hopfensperger KN, Lamers LPM, Gell P. 2015. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6:1–43.

    Google Scholar 

  • Holm GO, Perez BC, McWhorter DE, Krauss KW, Johnson DJ, Raynie RC, Killebrew CJ. 2016. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects. Wetlands 36:401–13.

    Google Scholar 

  • Knox SH, Sturtevant C, Matthes JH, Koteen L, Verfaillie J, Baldocchi D. 2015. Agricultural peatland restoration: Effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Glob Change Biol 21:750–65.

    Google Scholar 

  • Knox SH, Matthes JH, Sturtevant C, Oikawa PY, Verfaillie J, Baldocchi D. 2016. Biophysical controls on interannual variability in ecosystem-scale CO2 and CH4 exchange in a California rice paddy. J Geophys Res Biogeosci 121:978–1001.

    CAS  Google Scholar 

  • Knox SH, Windham-Myers L, Anderson F, Sturtevant C, Bergamaschi B. 2018. Direct and indirect effects of tides on ecosystem-scale CO2 exchange in a brackish tidal marsh in northern California. J Geophys Res Biogeosci 123:787–806.

    CAS  Google Scholar 

  • Knuth KH, Gotera A, Curry CT, Huyser KA, Wheeler KR, Rossow WB. 2013. Revealing relationships among relevant climate variables with information theory. arXiv:13114632 [physics.data-an]

  • Krauss KW, Noe GB, Duberstein JA, Conner WH, Stagg CL, Nicole C, Jones MC, Bernhardt CE, Graeme LB, From AS, Doyle TW, Day RH, Ensign SH, Pierfelice KN, Hupp CR, Chow AT, Whitbeck JL. 2018. The role of the upper tidal estuary in wetland blue carbon storage and flux. Global Biogeochem Cy 32:817–39.

    CAS  Google Scholar 

  • Krauss KW, Holm GO, Perez BC, McWhorter DE, Cormier N, Moss RF, Johnson DJ, Neubauer SC, Raynie RC. 2016. Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance. J Geophys Res Biogeosci 121:1503–21.

    CAS  Google Scholar 

  • Kroeger KD, Crooks S, Moseman-Valtierra S, Tang J. 2017. Restoring tides to reduce methane emissions in impounded wetlands: A new and potent blue carbon climate change intervention. Scientific Reports 7:11914.

    PubMed  PubMed Central  Google Scholar 

  • Kuhn M, Johnson K. 2013. Applied predictive modeling. New York: Springer.

    Google Scholar 

  • Kuhn M. 2017. caret: Classification and regression training. https://CRAN.R-project.org/package=caret

  • Larsen LG, Eppinga MB, Passalacqua P, Getz WM, Rose KA, Liang M. 2016. Appropriate complexity landscape modeling. Earth-Sci Rev 160:111–30.

    Google Scholar 

  • Larsen LG, Harvey JW. 2017. Disrupted carbon cycling in restored and unrestored urban streams: Critical timescales and controls. Limnol Oceanogr 62:S160–82.

    CAS  Google Scholar 

  • Leifeld J, Menichetti L. 2018. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat Commun 9:1071.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liaw A, Wiener M. 2002. Classification and regression by randomForest. R News 2:18–22. http://CRAN.R-project.org/doc/Rnews/

  • Miller RL, Fram M, Fujii R, Wheeler G. 2008. Subsidence reversal in a re-established wetland in the Sacramento-San Joaquin Delta, California, USA. San Francisco Estuary and Watershed Science 6

  • Mitsch WJ, Bernal B, Nahlik AM, Mander Ü, Zhang L, Anderson CJ, Jørgensen SE, Brix H. 2013. Wetlands, carbon, and climate change. Landscape Ecol 28:583–97.

    Google Scholar 

  • Morrissey EM, Gillespie JL, Morina JC, Franklin RB. 2014. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob Change Biol 20:1351–62.

    Google Scholar 

  • Neubauer SC, Megonigal JP. 2015. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18:1000–13.

    Google Scholar 

  • Nielsen DL, Brock MA. 2009. Modified water regime and salinity as a consequence of climate change: Prospects for wetlands of southern Australia. Climatic Change 95:523–33.

    CAS  Google Scholar 

  • Oikawa PY, Jenerette GD, Knox SH, Sturtevant C, Verfaillie J, Dronova I, Poindexter CM, Eichelmann E, Baldocchi DD. 2017. Evaluation of a hierarchy of models reveals importance of substrate limitation for predicting carbon dioxide and methane exchange in restored wetlands. J Geophys Res Biogeosci 122:145–67.

    CAS  Google Scholar 

  • Petrescu AMR, Lohila A, Tuovinen J-P, Baldocchi DD, Desai AR, Roulet NT, Vesala T, Dolman AJ, Oechel WC, Marcolla B, Friborg T, Rinne J, Matthes JH, Merbold L, Meijide A, Kiely G, Sottocornola M, Sachs T, Zona D, Varlagin A, Lai DYF, Veenendaal E, Parmentier F-JW, Skiba U, Lund M, Hensen A, van Huissteden J, Flanagan LB, Shurpali NJ, Grünwald T, Humphreys ER, Jackowicz-Korczyński M, Aurela MA, Laurila T, Grüning C, Corradi CAR, Schrier-Uijl AP, Christensen TR, Tamstorf MP, Mastepanov M, Martikainen PJ, Verma SB, Bernhofer C, Cescatti A. 2015. The uncertain climate footprint of wetlands under human pressure. PNAS 112:4594–9.

    PubMed  Google Scholar 

  • Poffenbarger HJ, Needelman BA, Megonigal JP. 2011. Salinity influence on methane emissions from tidal marshes. Wetlands 31:831–42.

    Google Scholar 

  • R Core Team. 2017. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing https://www.R-project.org/

  • Rinderer M, Ali G, Larsen LG. 2018. Assessing structural, functional and effective hydrologic connectivity with brain neuroscience methods: State-of-the-art and research directions. Earth-Sci Rev 178:29–47.

    Google Scholar 

  • Ruddell BL, Kumar P. 2009a. Ecohydrologic process networks: 1. Identification. Water Resour Res 45:W03419.

    Google Scholar 

  • Ruddell BL, Kumar P. 2009b. Ecohydrologic process networks: 2. Analysis and characterization. Water Resour Res 45:W03420.

    Google Scholar 

  • Runge J, Heitzig J, Petoukhov V, Kurths J. 2012. Escaping the curse of dimensionality in estimating multivariate transfer entropy. Phys Rev Lett 108:258701.

    PubMed  Google Scholar 

  • Runge J, Petoukhov V, Donges JF, Hlinka J, Jajcay N, Vejmelka M, Hartman D, Marwan N, Paluš M, Kurths J. 2015. Identifying causal gateways and mediators in complex spatio-temporal systems. Nat Commun 6:8502.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler DW. 2012. The dilemma of controlling cultural eutrophication of lakes. Proc R Soc B rspb.2012.1032.

  • Stocker BD, Zscheischler J, Keenan TF, Prentice IC, Peñuelas J, Seneviratne SI. 2018. Quantifying soil moisture impacts on light use efficiency across biomes. New Phytologist 218:1430–49.

    PubMed  Google Scholar 

  • Sturtevant C, Ruddell BL, Knox SH, Verfaillie J, Matthes JH, Oikawa PY, Baldocchi D. 2016. Identifying scale-emergent, nonlinear, asynchronous processes of wetland methane exchange. J Geophys Res Biogeosci 121:188–204.

    CAS  Google Scholar 

  • Syvitski JPM, Kettner AJ, Overeem I, Hutton EWH, Hannon MT, Brakenridge GR, Day J, Vörösmarty C, Saito Y, Giosan L, Nicholls RJ. 2009. Sinking deltas due to human activities. Nat Geosci 2:681–6.

    CAS  Google Scholar 

  • Vicuna S, Maurer EP, Joyce B, Dracup JA, Purkey D. 2007. The sensitivity of California water resources to climate change scenarios. J Am Water Resour As 43:482–98.

    Google Scholar 

  • Watson EB, Byrne R. 2009. Abundance and diversity of tidal marsh plants along the salinity gradient of the San Francisco Estuary: Implications for global change ecology. Plant Ecol 205:113–28.

    Google Scholar 

  • Webb EK, Pearman GI, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100.

    Google Scholar 

  • Wickham H. 2016. Scales: Scale functions for visualization. https://CRAN.R-project.org/package=scales

  • Wickham H. 2017. tidyverse: Easily install and load ’tidyverse’ packages. https://CRAN.R-project.org/package=tidyverse

  • Yu R, Ruddell BL, Kang M, Kim J, Childers D. 2019. Anticipating global terrestrial ecosystem state change using fluxnet. Global Change Biology. https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14602

  • Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, del Giorgio PA. 2014. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–91.

    CAS  PubMed  Google Scholar 

  • Zeileis A, Grothendieck G. 2005. zoo: S3 infrastructure for regular and irregular time series. Journal of Statistical Software 14:1–27.

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by the U.S. Department of Energy’s Office of Science and its funding of Ameriflux core sites (Ameriflux contract 7079856), and the California Division of Fish and Wildlife, through a contract of the California Department of Water Resources (Award 4600011240). We thank the editor and two anonymous reviewers for their constructive feedback on drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel D. Chamberlain.

Additional information

Author's contributions

SDC and DDB conceived and designed the study; SDC, KSH, EE, DJS, JGV, and DDB performed research; SDC and DDB wrote the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2734 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamberlain, S.D., Hemes, K.S., Eichelmann, E. et al. Effect of Drought-Induced Salinization on Wetland Methane Emissions, Gross Ecosystem Productivity, and Their Interactions. Ecosystems 23, 675–688 (2020). https://doi.org/10.1007/s10021-019-00430-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-019-00430-5

Keywords

Navigation