Skip to main content

Advertisement

Log in

Modeling the Sensitivity of the Seasonal Cycle of GPP to Dynamic LAI and Soil Depths in Tropical Rainforests

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

The seasonality of pan-tropical wet forests has been highlighted by recent remote sensing and eddy flux measurements that have recorded both increased and sustained dry-season gross primary productivity (GPP). These observations suggest that wet tropical forests are primarily light limited and that the mechanisms for resilience to drought and projected climate change must be considered in ecosystem model development. Here we investigate two proposed mechanisms for drought resilience of tropical forests, deep soil water access and the seasonality of phenology, using the LPJmL Dynamic Global Vegetation Model. We parameterize a new seasonal phenology module for tropical evergreen trees using remotely sensed leaf area index (LAI) and incoming solar radiation data from the Terra Earth Observing System. Simulations are evaluated along a gradient of dry-season length (DSL) in South America against MODIS GPP estimates. We show that deep soil water access is critical for maintaining dry-season GPP, whereas implementing a seasonal LAI did not enhance simulated dry-season GPP. The Farquhar-Collatz photosynthesis scheme used in LPJmL optimizes leaf nitrogen allocation according to light conditions, causing maximum photosynthetic capacity in the dry season. High LAI, characteristic of tropical forests, also dampens the seasonal amplitude of the fraction of photosynthetically active radiation (FPAR). Given the relatively high uncertainty in tropical phenology observations and their corresponding proximate drivers, we recommend that ecosystem model development focus on belowground processes. An improved representation of soil depths and rooting distributions is necessary for modeling the dynamics of dry-season tropical forest functioning and may have important impacts for modeling tropical forest vulnerability to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Araújo, AC, Nobre AD, Kruijt B, Elbers JA, Dallarosa R, Stefani P, von Randow C, Manzi AO, Culf AD, Gash JHC, Valentini R, Kabat P. 2002. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: the Manaus LBA site. J Geophys Res 107. doi:10.1029/2001JD000676

  • Arora, VK, GJ Boer. 2005. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology 11:39-59

    Article  Google Scholar 

  • Baker IT, Prihodko L, Denning AS, Goulden ML, Miller SD, da Rocha HR. 2008. Seasonal drought stress in the Amazon: reconciling models and observations. J Geophys Res 113:G00B01. doi:10.1029/2007JG000644

    Article  CAS  Google Scholar 

  • Betts RA, PM Cox, M Collins, PP Harris, C Huntingford, CD Jones. 2004. The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest dieback under global warming. Theoretical and Applied Climatology 78:157-175

    Article  Google Scholar 

  • Bondeau A, PC Smith, S Zaehle, S Schaphoff, W Lucht, W Cramer, D Gerten, H Lotze-Campen, C Muller, M Reichstein, and B Smith. 2007. Modelling the role of agriculture for the 20th century global carbon balance. Global Change Biology 13:679-706

    Article  Google Scholar 

  • Botta A, N Viovy, P Ciais, P Friedlingstein, and P Monfray. 2000. A global prognostic scheme of leaf onset using satellite data. Global Change Biology 6:709-725

    Article  Google Scholar 

  • Bruno RD, HR da Rocha, HC de Freitas, ML Goulden, and SD Miller. 2006. Soil moisture dynamics in an eastern Amazonian tropical forest. Hydrological Processes 20:2477-2489

    Article  Google Scholar 

  • Canadell JG, RB Jackson, JR Ehleringer, HA Mooney, OE Sala, and ED Schulze. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583-595

    Article  Google Scholar 

  • Carswell FE, Costa AL, Palheta M, Malhi Y, Meir P, Costa JdPR, Ruivo MdL, Leal LdSM, Costa JMN, Clement RJ, Grace J. 2002. Seasonality in CO2 and H2O flux at an eastern Amazonian rain forest. J Geophys Res 107. doi:10.1029/2000JD000284

  • Collatz GJ, JT Ball, C Grivet, and JA Berry. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54:107-136

    Article  Google Scholar 

  • Corlett R. 1987. Leaf phenology in tropical trees. Biotropica 31:133-138

    Google Scholar 

  • Costa MH, and JA Foley. 2000. Combined effects of deforestation and doubled atmospheric CO2 concentrations on the climate of Amazonia. Journal of Climate 13:18-34

    Article  Google Scholar 

  • Cox PM, RA Betts, M Collins, PP Harris, C Huntingford, and CD Jones. 2004. Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theoretical and Applied Climatology 78:137-156

    Article  Google Scholar 

  • Cox PM, PP Harris, C Huntingford, RA Betts, M Collins, CD Jones, TE Jupp, JA Marengo, and CA Nobre. 2008. Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453:212-216

    Article  PubMed  CAS  Google Scholar 

  • Cramer W, A Bondeau, S Schaphoff, W Lucht, B Smith, and S Sitch. 2004. Tropical forests and the global carbon cycle: Impacts of atmospheric carbon dioxide, climate change and rate of deforestation. Philosophical Transactions of the Royal Society of London 359:331-343

    Article  CAS  Google Scholar 

  • da Rocha HR, R Freitas, R Rosolem, RIN Juarez, RN Tannus, MA Ligo, OMR Cabral, and MAF Silva Dias. 2002. Measurements of CO2 exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brazil. Biota Neotropica 2:1-10

    Google Scholar 

  • de Negreiros GH, Nepstad DC. 1994. Mapping deeply rooting forests of Brazilian Amazonia with GIS. Proceedings of ISPRS commission VII symposium—resource and environmental monitoring 7:334–8

  • Domingues TF, JA Berry, LA Martinelli, JPHB Ometto, and JR Ehleringer. 2005. Parameterization of canopy structure and leaf-level gas exchange for an Eastern Amazonian tropical rain forest (Tapajos National Forest, Para, Brazil). Earth Interactions 9:1-23

    Article  Google Scholar 

  • Doughty CE, Goulden ML. 2008. Seasonal patterns of tropical forest leaf area index and CO2 exchange. J Geophys Res 113. doi:10.1029/2007JG000590

  • Elliot S, PJ Baker, R Borchert. 2006. Leaf flushing during the dry season: the paradox of Asian monsoon forests. Global Ecology and Biogeography 15:248-257

    Google Scholar 

  • Fan, SM, SC Wofsy, PS Bakwin, DJ Jacob. 1990. Atmosphere-biosphere exchange of CO2 and O3 in the Central Amazon forest. Journal of Geophysical Research 95:16851-16864

    Article  CAS  Google Scholar 

  • Farquhar GD, S von Caemmerer, JA Berry. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta 149:78-90

    Article  CAS  Google Scholar 

  • Field, CB, MJ Behrenfield, JT Randerson, P Falkowski. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281:237-240

    Article  PubMed  CAS  Google Scholar 

  • Fisher, JI, AD Richardson, JF Mustard. 2007. Phenology model from surface meteorology does not capture satellite-based greenup estimations. Global Change Biology 13:707-721

    Article  Google Scholar 

  • Fisher RA, M Williams, R Lobo do Vale, A Lola da Costa, P Meir. 2006. Evidence from Amazonian forests is consistent with isohydric control of leaf water potential. Plant, Cell and Environment 29:151-165

    Article  PubMed  Google Scholar 

  • Foley JA, Botta A, Coe MT, Costa MH. 2002. El Niño southern oscillation and the climate, ecosystems, and rivers of Amazonia. Global Biogeochem Cycles 4. doi:10.1029/2002GB001872

  • Friedl MA, DK McIver, JCF Hodges, XY Zhang, D Muchoney, AH Strahler, CE Woodcock, S Gopal, A Schneider, A Cooper, A Baccini, F Gao, CB Schaaf. 2002. Global Land Cover Mapping from MODIS: Algorithms and Early Results. Remote Sensing of Environment 83:287-302

    Article  Google Scholar 

  • Gerten D, S Schaphoff, U Haberlandt, W Lucht, S Sitch. 2004. Terrestrial vegetation and water balance - hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology 286:249-270

    Article  CAS  Google Scholar 

  • Goulden ML, SD Miller, HR da Rocha, M Menton, HC de Freitas, AME Silva Figueira, CAD de Sousa. 2004. Diel and seasonal patterns of tropical forest CO2 exchange. Ecological Applications 14:S42-S54

    Article  Google Scholar 

  • Grace J, J Lloyd, J McIntyre, AC Miranda, P Meir, HS Miranda, CA Nobre, J Moncrief, Y Malhi, I Wright, JHC Gash. 1995. Carbon dioxide uptake by an undisturbed tropical rainforest in southwest Amazonia, 1992-1993. Science 270:778-780

    Article  CAS  Google Scholar 

  • Harris PP, C Huntingford, PM Cox, JHC Gash, Y Malhi. 2004. Effect of soil moisture on canopy conductance of Amazonian rainforest. Agricultural and Forest Meteorology 122:215-227

    Article  Google Scholar 

  • Haxeltine, A, IC Prentice. 1996a. BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles 10:693-709

    Article  CAS  Google Scholar 

  • Haxeltine A, IC Prentice. 1996b. A general model for the light-use efficiency of primary production. Functional Ecology 10:551-561

    Article  Google Scholar 

  • Huete, AR, K Didan, YE Shimabukuro, P Ratana, SR Saleska, LR Hutyra, W Yang, RR Nemani, and RB Myneni. 2006. Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters 33: L06405, doi:06410.01029/02005GL025583

    Article  Google Scholar 

  • Ichii K, H Hashimoto, MA White, C Potter, LR Hutyra, AR Huete, RB Myneni, RR Nemani. 2007. Constraining rooting depths in tropical rainforests using satellite data and ecosystem modeling for accurate simulation of gross primary production seasonality. Global Change Biology 13:67-77

    Article  Google Scholar 

  • Jipp, PH, DC Nepstad, DK Cassel, CR de Carvalho. 1998. Deep soil moisture storage and transpiration in forests and pastures of seasonally-dry Amazonia. Climate Change 39:395-412

    Article  Google Scholar 

  • Juarez, RIN, MG Hodnett, R Fu, ML Goulden, C von Randow. 2007. Controls of dry season evapotranspiration over the Amazonian forest as inferred from observations at a Southern Amazon forest site. Journal of Climate 20:2827-2839

    Article  Google Scholar 

  • Katul, G, R Leuning, R Oren. 2003. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant, Cell and Environment 26:339-350

    Article  CAS  Google Scholar 

  • Keller M, A Alencar, GP Asner, B Braswell, M Bustamante, EA Davidson, T Feldpausch, E Fernandes, ML Goulden, P Kabat, B Kruijt, F Luizao, SD Miller, D Markewitz, AD Nobre, CA Nobre, NP Filho, HR da Rocha, PS Dias, C Von Randow, GL Vourlitis. 2004. Ecological research in the large-scale biosphere-atmosphere experiment in Amazonia: Early results. Ecological Applications 14:S3-S16

    Article  Google Scholar 

  • Kleidon A, M Heimann. 1999. Deep-rooted vegetation, Amazonian deforestation, and climate: results from a modelling study. Global Ecology and Biogeography 8:397-405

    Article  Google Scholar 

  • Kobayashi H, DG Dye. 2005. Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index. Remote Sensing of the Environment 97:519-525

    Article  Google Scholar 

  • Krinner, G, N Viovy, N de Noblet-Ducoudré, J Ogeé, J Polcher, P Friedlingstein, P Ciais, S Sitch, and IC Prentice. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19:GB1015, doi:1010.1029/2003GB002199

    Article  CAS  Google Scholar 

  • Lee JE, Oliveira RS, Dawson TE, Fung IY. 2005. Root functioning modifies seasonal climate. Proc Natl Acad Sci USA 102:17576–81

    Article  PubMed  CAS  Google Scholar 

  • Malhi Y, AD Nobre, J Grace, B Kruijt, MGP Pereira, A Culf, S Scott. 1998. Carbon dioxide transfer over a central Amazonian rain forest. Journal of Geophysical Research 103:31593-31612

    Article  CAS  Google Scholar 

  • Malhi Y, Roberts JT, Betts RA, Killeen T, Li W, Nobre C. 2008. Climate change, deforestation, and the fate of the Amazon. Science 319. doi:10.1126/science.1146961

  • Mayle FE, MJ Power. 2008. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests. Philosophical Transactions of the Royal Society B 363:1829-1838

    Article  Google Scholar 

  • Miranda AC, HS Miranda, J Lloyd, J Grace, RJ Francey, J McIntyre, P Meir, P Riggan, R Lockwood, J Brass. 1997. Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes. Plant, Cell and Environment 20:315-328

    Article  CAS  Google Scholar 

  • Moorcroft PR, GC Hurtt, SW Pacala. 2001. A method for scaling vegetation dynamics: The ecosystem demography model (ED). Ecological Monographs 71:557-586

    Google Scholar 

  • Myneni RB, Yang W, Nemani RR, Huete AR, Dickinson RE, Knyazikhin Y, Didan K, Fu R, Negron Juarez RI, Saatchi SS, Hashimoto H, Shabanov NV, Tan B, Ratana P, Privette JL, Morisette JT, Vermote EF, Roy DP, Wolfe RE, Fiedl MA, Running SW, Votava P, El-Saleous N, Devadiga S, Su Y, Salomonson VV. 2007. Large seasonal swings in leaf area of Amazon rainforests. Proc Natl Acad Sci USA. doi:10.1073/pnas.0611338104

  • Nepstad D, CR De Carvalhos, EA Davidson, PH Jipp, PA Lefebvre, GH Negreiros, ED da Silva, TA Stone, SE Trumbore, S Vieira. 1994. The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666-669

    Article  CAS  Google Scholar 

  • Nepstad D, IM Tohver, D Ray, P Moutinho, G Cardinot. 2007. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259-2269

    Article  PubMed  Google Scholar 

  • New M, D Lister, M Hulme, I Makin. 2002. A high-resolution data set of surface climate over global land areas. Climate Research 21:1-25

    Article  Google Scholar 

  • Oliveira RS, L Bezerra, EA Davidson, F Pinto, CA Klink, D Nepstad, A Moreira. 2005a. Deep root function in soil water dynamics in cerrado savannas of central Brazil. Functional Ecology 19:574-581

    Article  Google Scholar 

  • Oliveira RS, T Dawson, SSO Burgess, D Nepstad. 2005b. Hydraulic redistribution in three Amazonian trees. Oecologia 145:354-363

    Article  PubMed  Google Scholar 

  • Österle H, FW Gerstengarbe, PC Werner. 2003. Homogenisierung und Aktualisierung des Klimadatensatzes der Climate Research Unit der Universität of East Anglia, Norwich. Terra Nostra 6:326–329

    Google Scholar 

  • Potter C, S Klooster, CR de Carvalho, VB Genovese, A Torregrosa, J Dungan, M Bobo, J Coughlan. 2001. Modeling seasonal and interannual variability in ecosystem carbon cycling for the Brazilian Amazon region. Journal of Geophysical Research 106:10423-10446

    Article  CAS  Google Scholar 

  • Reich PB. 1995. Phenology of tropical forests: patterns, causes, and consequences. Canadian Journal of Botany 73:164-174

    Article  Google Scholar 

  • Reich PB, R Borchert. 1984. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. Journal of Ecology 72:61-74

    Article  Google Scholar 

  • Rice AH, EH Pyle, SR Saleska, LR Hutyra, M Palace, M Keller, PB de Camargo, K Portilho, DF Marques, SC Wofsy. 2004. Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecological Applications 14:S55-S71

    Article  Google Scholar 

  • Rivera, G, S Elliot, LS Caldas, G Nicolossi, VTR Coradin, and R Borchert. 2002. Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16:445-456

    Article  Google Scholar 

  • Rivera G, S Elliot, LS Caldas, G Nicolossi, VTR Coradin, R Borchert. 2007. Increasing day-length induces spring flushing of tropical dry forest trees in the absence of rain. Trees 16:445-456

    Article  Google Scholar 

  • Rödenbeck C, S Houweling, M Gloor, M Heimann. 2003. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmospheric Chemistry and Physics 3:1919-1964

    Article  Google Scholar 

  • Running, SW, RR Nemani, FA Heinsch, M Zhao, M Reeves, H Hashimoto. 2004. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54:547-560

    Article  Google Scholar 

  • Salazar LF, Nobre CA, Oyama MD. 2007. Climate change consequences on the biome distribution in tropical South America. Geophys Res Lett 34. doi:10.1029/2007GL029695

  • Saleska SR, Didan K, Huete AR, da Rocha HR. 2007. Amazon forests green-up during 2005 drought. Science. doi:10.1126/science.1146663

  • Saleska, SR, SD Miller, DM Matross, ML Goulden, SC Wofsy, HR da Rocha, PB de Camargo, P Crill, BC Daube, HC de Freitas, LR Hutyra, M Keller, V Kirchhoff, M Menton, JW Munger, EH Pyle, AH Rice, and H Silva. 2003. Carbon in Amazon forests: Unexpected seasonal fluxes and disturbance-induced losses. Science 302:1554-1558

    Article  PubMed  CAS  Google Scholar 

  • Schenck HJ, RB Jackson. 2002. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology 90:480-494

    Article  Google Scholar 

  • Sellers P, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich D, Zhang C, Collelo GD, Bounoua L. 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation. J Clim 9:706–37

    Article  Google Scholar 

  • Senna MCA, Costa MH, Shimabukuro YE. 2005. Fraction of photosynthetically active radiation absorbed by Amazon tropical forest: a comparison of field measurements, modeling, and remote sensing. J Geophys Res 110. doi:10.1029/2004JG000005

  • Shuttleworth, WJ. 1988. Evaporation from Amazonian rainforest. Proc R Soc Lond 233:321–46

    Article  Google Scholar 

  • Sitch S, B Smith, IC Prentice, A Arneth, A Bondeau, W Cramer, JO Kaplan, S Levis, W Lucht, MT Sykes, K Thonicke, S Venevsky. 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology 9:161-185

    Article  Google Scholar 

  • Stöckli R, Rutishauser T, Dragoni D, O’Keefe J, Thornton PE, Jolly M, Lu L, Denning AS. 2008. Remote sensing data assimilation for a prognostic phenology model. J Geophys Res 113. doi:10.1029/2008JG000781

  • Von Randow C, AO Manzi, B Kruijt, PJ de Oliveira, FB Zanchi, RL Silva, MG Hodnett, JHC Gash, JA Elbers, MJ Waterloo, FL Cardoso, P Kabat. 2004. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia. Theoretical and Applied Climatology 78:5-26

    Google Scholar 

  • Vörösmarty CJ, B Moore III, AL Grace, MP Gildea, JM Melillo, BJ Peterson, EB Rastetter, PA Steudler. 1989. Continental scale models of water balance and fluvial transport: An application to South America. Global Biogeochemical Cycles 3:241-255

    Article  Google Scholar 

  • Vourlitis GL, de Souza Nogueira J, de Almeida Lobo F, Sendall KM, de Paulo SR, Dias CAA, Pinto OB Jr, de Andrade NLR. 2008. Energy balance and canopy conductance of a tropical semi-deciduous forest of the southern Amazon Basin. Water Resour Res 44. doi:10.1029/2006WR005526

  • Webb, RS, and CE Rosenzweig. 1993. Specifying land surface characteristics in general circulation models: Soil profile data set and derived water-holding capacities. Global Biogeochemical Cycles 7:97-108

    Article  Google Scholar 

  • Williams M, YE Shimabukuro, DA Herbert, SP Lacruz, CD Renno, EB Rastetter. 2002. Heterogeneity of soils and vegetation in an Eastern Amazonian rain forest: Implications for scaling up biomass and production. Ecosystems 5:692-704

    Article  CAS  Google Scholar 

  • Zobler L. 1986. A world soil file for global climate modeling. NASA Technical Memorandum 87802, 32 pp

Download references

Acknowledgments

We acknowledge Marlies Gumpenberger, Fanny Langerwisch, Wolfgang Lucht, Anja Rammig, Paul Stoy, Kirsten Thonicke, and two anonymous reviewers for helpful comments and suggestions. We would like to thank the Distributed Active Archive Center at the Oak Ridge National Laboratory for making the MODIS Selected Sites product available. Funding was provided by the EU Marie Curie Research Training Network GREENCYCLES (MRTN-CT-2004-512464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Poulter.

Additional information

Author Contributions

BP conceived of the study, analyzed data, and wrote the paper. UH designed study and contributed new methods. WC designed study and contributed to paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulter, B., Heyder, U. & Cramer, W. Modeling the Sensitivity of the Seasonal Cycle of GPP to Dynamic LAI and Soil Depths in Tropical Rainforests. Ecosystems 12, 517–533 (2009). https://doi.org/10.1007/s10021-009-9238-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-009-9238-4

Key words

Navigation