Skip to main content
Log in

Introducing a low-cost tool for 3D characterization of pitting corrosion in stainless steel

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Herein, we propose an approach to three-dimensional (3D) reconstruction of corroded samples to have access to information about the shape, diameter, volume, depth, and spatial distribution of pits. For this purpose, a 304 stainless steel sample, after exposure to controlled corrosion conditions, was submitted to a sequence of polishing, surface image acquisition, and sample thickness measurement. This allows the 3D reconstruction of the sample using computational tomography. The analyses of the two-dimensional and the reconstructed three-dimensional images made it possible to evaluate all the geometric parameters of the pits as well as to compare these data with the electrochemical measurements recorded during the corrosion process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Koch G, Varney J, Thompson N, Moghissi O, Gould M, Payer J (2016) International measures of prevention, application, and economics of corrosion technologies study. Houston, Texas, USA

  2. Marcus P, Grimal JM (1992) The anodic dissolution and passivation of NiCrFe alloys studied by ESCA. Corros Sci 33:805–814

    Article  CAS  Google Scholar 

  3. Olefjord I (1985) Surface composition of stainless steels during anodic dissolution and passivation studied by ESCA. J Electrochem Soc 132:2854

    Article  CAS  Google Scholar 

  4. Marcus P, Maurice V, Strehblow HH (2008) Localized corrosion (pitting): a model of passivity breakdown including the role of the oxide layer nanostructure. Corros Sci 50:2698–2704

    Article  CAS  Google Scholar 

  5. Maurice V, Yang WP, Marcus P (1994) XPS and STM investigation of the passive film formed on Cr(110) single-crystal surfaces. J Electrochem Soc 141:3016

    Article  CAS  Google Scholar 

  6. Pan C, Liu L, Li Y, Wang S, Wang F (2011) Passive film growth mechanism of nanocrystalline 304 stainless steel prepared by magnetron sputtering and deep rolling techniques. Electrochim Acta 56:7740–7748

    Article  CAS  Google Scholar 

  7. Zhang W, Frankel GS (2003) Transitions between pitting and intergranular corrosion in AA2024. Electrochim Acta 48:1193–1210

    Article  CAS  Google Scholar 

  8. Jun J, Holguin K, Frankel GS (2014) Pitting corrosion of very clean type 304 stainless steel. CORROSION 70:146–155

    Article  CAS  Google Scholar 

  9. Zimer AM, De Carra MAS, Rios EC, Pereira EC, Mascaro LH (2013) Initial stages of corrosion pits on AISI 1040 steel in sulfide solution analyzed by temporal series micrographs coupled with electrochemical techniques. Corros Sci 76:27–34

    Article  CAS  Google Scholar 

  10. Rios EC, Zimer AM, Pereira EC, Mascaro LH (2014) Analysis of AISI 1020 steel corrosion in seawater by coupling electrochemical noise and optical microscopy. Electrochim Acta 124:211–217

    Article  CAS  Google Scholar 

  11. Finšgar M, Jackson J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros Sci 86:17–41

    Article  Google Scholar 

  12. Wadhwani PM, Ladha DG, Panchal VK, Shah NK (2015) Enhanced corrosion inhibitive effect of p-methoxybenzylidene-4,4′-dimorpholine assembled on nickel oxide nanoparticles for mild steel in acid medium. RSC Adv 5:7098–7111

    Article  CAS  Google Scholar 

  13. Ait Albrimi Y, Ait Addi A, Douch J, Souto RM, Hamdani M (2015) Inhibition of the pitting corrosion of 304 stainless steel in 0.5 M hydrochloric acid solution by heptamolybdate ions. Corros Sci 90:522–528

    Article  CAS  Google Scholar 

  14. Kesavan D, Gopiraman M, Sulochana N (2012) Green inhibitors for corrosion of metals: a review. Chem Sci Rev Lett 1:CS10204205

    Google Scholar 

  15. NACE International (2018) Pitting corrosion. https://www.nace.org/Pitting-Corrosion/. Accessed 5 Jul 2018

  16. Bhandari J, Khan F, Abbassi R, Garaniya V, Ojeda R (2015) Modelling of pitting corrosion in marine and offshore steel structures - a technical review. J Loss Prev Process Ind 37:39–62

    Article  CAS  Google Scholar 

  17. ASTM (1990) ASTM G31-72 (2004): Standard practice for laboratory immersion corrosion testing of metals

  18. ASTM (2018) ASTM G96-90 (2018): Standard guide for on-line monitoring of corrosion in plant equipment (electrical and electrochemical methods)

  19. Zimer AM, Rios EC, Mascaro LH, Pereira EC (2011) Temporal series micrographs coupled with polarization curves to study pit formation under anodic polarization. Electrochem Commun 13:1484–1487

    Article  CAS  Google Scholar 

  20. Tang F, Lin Z, Chen G, Yi W (2014) Three-dimensional corrosion pit measurement and statistical mechanical degradation analysis of deformed steel bars subjected to accelerated corrosion. Constr Build Mater 70:104–117

    Article  Google Scholar 

  21. Kashani MM, Crewe AJ, Alexander NA (2013) Use of a 3D optical measurement technique for stochastic corrosion pattern analysis of reinforcing bars subjected to accelerated corrosion. Corros Sci 73:208–221

    Article  CAS  Google Scholar 

  22. Wang Y, Cheng G (2016) Quantitative evaluation of pit sizes for high strength steel: electrochemical noise, 3-D measurement, and image-recognition-based statistical analysis. Mater Des 94:176–185

    Article  CAS  Google Scholar 

  23. Wang Y, Cheng G, Li Y (2016) Observation of the pitting corrosion and uniform corrosion for X80 steel in 3.5 wt.% NaCl solutions using in-situ and 3-D measuring microscope. Corros Sci 111:508–517

    Article  CAS  Google Scholar 

  24. Xu Y, Li H, Li S, Guan X, Lan C (2016) 3-D modelling and statistical properties of surface pits of corroded wire based on image processing technique. Corros Sci 111:275–287

    Article  CAS  Google Scholar 

  25. Ghahari SM, Davenport AJ, Rayment T, Suter T, Tinnes JP, Padovani C, Hammons JA, Stampanoni M, Marone F, Mokso R (2011) In situ synchrotron X-ray micro-tomography study of pitting corrosion in stainless steel. Corros Sci 53:2684–2687

    Article  CAS  Google Scholar 

  26. Ghahari M, Krouse D, Laycock N, Rayment T, Padovani C, Stampanoni M, Marone F, Mokso R, Davenport AJ (2015) Synchrotron X-ray radiography studies of pitting corrosion of stainless steel: extraction of pit propagation parameters. Corros Sci 100:23–35

    Article  CAS  Google Scholar 

  27. Itty P-A, Serdar M, Meral C, Parkinson D, MacDowell AA, Bjegović D, Monteiro PJM (2014) In situ 3D monitoring of corrosion on carbon steel and ferritic stainless steel embedded in cement paste. Corros Sci 83:409–418

    Article  CAS  Google Scholar 

  28. Stulík K, Amatore C, Holub K, Marecek V, Kutner W (2000) Microelectrodes. Definitions, characterization, and applications (technical report). Pure Appl Chem 72:1483–1492

    Article  Google Scholar 

  29. ASTM (2003) ASTM G1-03 (2017): Standard practice for preparing, cleaning, and evaluating corrosion test

  30. Angelopoulou A, Psarrou A, Garcia-Rodriguez J, Orts-Escolano S, Azorin-Lopez J, Revett K (2015) 3D reconstruction of medical images from slices automatically landmarked with growing neural models. Neurocomputing 150:16–25

    Article  Google Scholar 

  31. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  Google Scholar 

  32. Zimer AM, Rios EC, Mendes P d CD, Gonçalves WN, Bruno OM, Pereira EC, Mascaro LH (2011) Investigation of AISI 1040 steel corrosion in H 2S solution containing chloride ions by digital image processing coupled with electrochemical techniques. Corros Sci 53:3193–3201

    Article  CAS  Google Scholar 

  33. Zimer AM, De-Carra MAS, Mascaro LH, Pereira EC (2014) Temporal series of micrographs coupled with electrochemical techniques to analyze pitting corrosion of AISI 1040 steel in carbonate and chloride solutions. Electrochim Acta 124:143–149

    Article  CAS  Google Scholar 

  34. Amin MA, Abd El Rehim SS, El-Lithy AS (2010) Pitting and pitting control of Al in gluconic acid solutions - polarization, chronoamperometry and morphological studies. Corros Sci 52:3099–3108

    Article  CAS  Google Scholar 

  35. Vicente F, Gregori J, García-Jareño JJ, Giménez-Romero D (2005) Cyclic voltammetric generation and electrochemical quartz crystal microbalance characterization of passive layer of nickel in a weakly acid medium. J Solid State Electrochem 9:684–690

    Article  CAS  Google Scholar 

  36. da Silva MM, Mascaro LH, Pereira EC, Zimer AM (2016) Near-surface solution pH measurements during the pitting corrosion of AISI 1020 steel using a ring-shaped sensor. J Electroanal Chem 780:379–385

    Article  Google Scholar 

  37. Takeno N (2005) Atlas of eh-pH diagrams. Intercomparison of thermodynamic databases

  38. Zhang HW, Hei ZK, Liu G, Lu J, Lu K (2003) Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater 51:1871–1881

    Article  CAS  Google Scholar 

  39. Laycock NJ, White SP, Noh JS, Wilson PT, Newman RC (1998) Perforated covers for propagating pits. J Electrochem Soc 145:1101

    Article  CAS  Google Scholar 

  40. Krawiec H, Vignal V, Oltra R (2004) Use of the electrochemical microcell technique and the SVET for monitoring pitting corrosion at MnS inclusions. Electrochem Commun 6:655–660

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by FAPESP (Grant 2013/07296-2), CNPq, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto C. Pereira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1718 kb).

(MP4 8071 kb).

(MP4 12,486 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, D., Cuadros Linares, O.A., Oliveira, A.L.S. et al. Introducing a low-cost tool for 3D characterization of pitting corrosion in stainless steel. J Solid State Electrochem 24, 1909–1919 (2020). https://doi.org/10.1007/s10008-020-04586-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04586-2

Keywords

Navigation