Skip to main content
Log in

Furan and pyridinechalcogenodiazole-based π-conjugated systems via a donor-acceptor approach

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Two novel furan and pyridinechalcogenodiazole based monomers, namely 4,7-di(furan-2-yl)-[1, 2, 5]thiadiazolo[3,4-c]pyridine (Fu-S-Fu) and 4,7-di(furan-2-yl)-[1, 2, 5]selenadiazolo [3,4-c]pyridine (Fu-Se-Fu), where a single atom in the pyridinechalcogenodiazole unit is varied from S to Se, were designed and synthesized via a donor-acceptor approach, and then the corresponding polymers, P(Fu-S-Fu) and P(Fu-Se-Fu), were electrosynthesized. Also, structure characterization and optoelectronic properties, including FTIR, SEM, DFT theoretical calculations, intramolecular charge transfer nature, optical and electrochemical behaviors, and electrochromic performance, were systematically investigated and comparatively discussed. The obtained monomers exhibited lower oxidation potential (Fu-S-Fu: 1.12 V; Fu-Se-Fu: 1.09 V), leading to the facile electrodeposition of uniform hybrid polymer films with outstanding electroactivity at low oxidation potentials. Optical spectroscopy of corresponding polymers showed that Se substitution led to a red-shift in the low-energy transition, while the high-energy band remains relatively constant in energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Skotheim TA, Reynolds JR (2007) Handbook of conducting polymers, 3rd edn. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  2. Sadki S, Schottland P, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. Chem Soc Rev 29:283–293

    Article  Google Scholar 

  3. Perepichka IF, Perepichka DF (2009) Handbook of thiophene-based materials: applications in organic electronics and photonics. Wiley, Chichester, West Sussex, England

    Book  Google Scholar 

  4. Patra A, Wijsboom YH, Zade SS, Li M, Sheynin Y, Leitus G, Bendikov M (2008) Poly(3,4-ethylenedioxyselenophene). J Am Chem Soc 130:6734–6736

    Article  CAS  Google Scholar 

  5. Patra A, Bendikov M (2010) Polyselenophenes. J Mater Chem 20:422–433

    Article  CAS  Google Scholar 

  6. Gidron O, Diskin-Posner Y, Bendikov M (2010) α-oligofurans. J Am Chem Soc 132:2148–2150

    Article  CAS  Google Scholar 

  7. Walker B, Tomayo AB, Dang XD, Zalar P, Seo JH, Garcia A, Tantiwi-wat M, Nguyen TQ (2009) Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv Funct Mater 19:3063–3069

    Article  CAS  Google Scholar 

  8. İҫli-Ӧzkut M, İpek H, Karabay B, Cihaner A, Ӧnal AM (2013) Furan and benzochalcogenodiazole based multichromic polymers via a donor-acceptor approach. Polym Chem 4:2457–2463

    Article  Google Scholar 

  9. Lin JT, Chen PC, Yen YS, Hsu YC, Chou HH, Yeh MCP (2008) Organic dyes containing furan moiety for high-performance dye-sensitized solar cells. Org Lett 11:97–100

    Article  Google Scholar 

  10. Gidron O, Dadvand A, Sheynin Y, Bendikov M, Perepichka DF (2011) Towards “green” electronic materials. α-oligofurans as semiconductors. Chem Commun 47:1976–1978

    Article  CAS  Google Scholar 

  11. McConnell RM, Godwin WE, Baker SE, Powell K, Baskett M, Morara A (2004) Polyfuran and co-polymers: a chemical synthesis. Int J Polym Mater 53:697–708

    Article  CAS  Google Scholar 

  12. Distefano G, Jones D, Guerra M, Favaretto L, Modelli A, Mengoli G (1991) Determination of the electronic structure of oligofurans and extrapolation to polyfuran. J Phys Chem 95:9746–9753

    Article  CAS  Google Scholar 

  13. Demirboğa B, Ӧnal AM (1999) Electrochemical polymerization of furan and 2-methylfuran. Synth Met 99:237–242

    Article  Google Scholar 

  14. Tirkesx S, Ӧnal AM (2007) Electrosynthesis of polyfuran in acetonitrile–boron trifluoride–ethyl ether mixture and its device application. J Appl Polym Sci 103:871–876

    Article  Google Scholar 

  15. Tourillon G, Garnier F (1982) New electrochemically generated organic conducting polymers. J Electroanal Chem 135:173–178

    Article  CAS  Google Scholar 

  16. Ohsawa T, Kaneto K, Yoshino K (1984) Electrical and optical properties of electrochemically prepared polyfuran. Jpn J Appl Phys 23:L663

    Article  Google Scholar 

  17. Glenis S, Benz M, LeGoff E, Schindler JL, Kannewurf CR, Kanatzidis MG (1993) Polyfuran:a new synthetic approach and electronic properties. J Am Chem Soc 115:12519–12525

    Article  CAS  Google Scholar 

  18. Wan XB, Yan F, Jin S, Liu XR, Xue G (1999) Low potential electrochemical synthesis of polyfuran and characterization of the obtained free-standing film. Chem Mater 11:2400–2407

    Article  CAS  Google Scholar 

  19. Peart PA, Tovar JD (2009) Expanding the realm of furan-based conducting polymers through conjugation with 1, 6-methano[10]annulene. Macromolecules 42:4449–4455

    Article  CAS  Google Scholar 

  20. Bijleveld JC, Karsten BP, Mathijssen SGJ, Wienk MM, de Leeuw DM, Janssen RAJ (2011) Small band gap copolymers based on furan and diketopyrrolopyrrole for field-effect transistors and photovoltaic cells. J Mater Chem 21:1600–1606

    Article  CAS  Google Scholar 

  21. Yiu AT, Beaujuge PM, Lee OP, Woo CH, Toney MF, JMJ F (2012) Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. J Am Chem Soc 134:2180–2185

    Article  CAS  Google Scholar 

  22. Sonar P, Foong TRB, Singh SP, Li Y, Dodabalapur A (2012) A furan-containing conjugated polymer for high mobility ambipolar organic thin film transistors. Chem Commun 48:8383–8385

    Article  CAS  Google Scholar 

  23. Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923

    Article  CAS  Google Scholar 

  24. Beaujuge PM, Reynolds JR (2010) Color control in π-conjugated organic polymers for use in electrochromic devices. Chem Rev 110:268–320

    Article  CAS  Google Scholar 

  25. Beaujuge PM, Amb CM, Reynolds JR (2010) Spectral engineering in π-conjugated polymers with intramolecular donor-acceptor interactions. Acc Chem Res 43:13961407

    Article  Google Scholar 

  26. Zhang L, Colella NS, Liu F, Trahan S, Baral JK, Winter HH, Mannsfeld SCB, Briseno AL (2013) Synthesis, electronic structure, molecular packing/morphology evolution, and carrier mobilities of pure oligo−/poly (alkylthiophenes). J Am Chem Soc 135:844–854

    Article  CAS  Google Scholar 

  27. Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985

    Article  CAS  Google Scholar 

  28. Blouin N, Michaud A, Gendron D, Wakim S, Blair E, Neagu-Plesu R, Belletête M, Durocher G, Tao Y, Leclerc M (2008) Toward a rational design of poly (2,7-carbazole) derivatives for solar cells. J Am Chem Soc 130:732–742

    Article  CAS  Google Scholar 

  29. Liu J, Chen Q (2010) Advances in synthesis and application of imidazopyridine derivatives. Prog Chem 22:631–638

    CAS  Google Scholar 

  30. Sun Y, Chien SC, Yip HL, Zhang Y, Chen KS, Zeigler DF, Chen FC, Lin B, Jen AKY (2011) High-mobility low-bandgap conjugated copolymers based on indacenodithiophene and thiadiazolo[3,4-c] pyridine units for thin film transistor and photovoltaic applications. J Mater Chem 21:13247–13255

    Article  CAS  Google Scholar 

  31. Zhou H, Yang L, Price SC, Knight KJ, You W (2010) Enhanced photovoltaic performance of low-bandgap polymers with deep LUMO levels. Angew Chem 122:8164–8167

    Article  Google Scholar 

  32. Zhen SJ, Lu BY, Xu JK, Zhang SM, Li YZ (2014) Poly(mono-, bi- or trifuran): effect of oligomer chain length on the electropolymerization performances and polymer properties. RSC Adv 4:14001–14012

    Article  CAS  Google Scholar 

  33. Zhen SJ, Xu JK, Lu BY, Zhang SM, Zhao L, Li J (2014) Tuning the optoelectronic properties of polyfuran by design of furan-EDOT monomers and free-standing films with enhanced redox stability and electrochromic performances. Electrochim Acta 146:666–678

    Article  CAS  Google Scholar 

  34. Ming SL, Zhen SJ, Lin KW, Zhao L, Xu JK, Lu BY (2015) Thiadiazolo[3,4-c]pyridine as an acceptor toward fast-switching green donor-acceptor-type electrochromic polymer with low bandgap. ACS Appl Mater Interfaces 7:11089–11098

    Article  CAS  Google Scholar 

  35. Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bässler H, Porsch M, Daub J (1995) Efficient two layer leds on a polymer blend basis. Adv Mater 7:551–554

    Article  CAS  Google Scholar 

  36. Zhu SS, Swager TM (1997) Conducting polymetallorotaxanes: metal ion mediated enhancements in conductivity and charge localization. J Am Chem Soc 119:12568–12577

    Article  CAS  Google Scholar 

  37. Cihaner A, Algi F (2008) A novel neutral state green polymeric electrochromic with superior n- and p-doping processes: closer to red-blue-green (RGB) display realization. Adv Funct Mater 18:3583–3589

    Article  CAS  Google Scholar 

  38. İҫli M, Pamuk M, Algi F, Ӧnal AM, Cihaner A (2010) Donor-acceptor polymer electrochromes with tunable colors and performance. Chem Mater 22:4034–4044

    Article  Google Scholar 

  39. Dong B, Xing YH, Xu JK, Zheng LQ, Hou J, Zhao F (2008) Electrosyntheses of free-standing and highly conducting polyselenophene films in an ionic liquid. Electrochim Acta 53:5745–5751

    Article  CAS  Google Scholar 

  40. Greory LG, Theresa MM, Dwight SS (2012) Atomistic band gap engineering in donor–acceptor polymers. J Am Chem Soc 134:539–547

    Article  Google Scholar 

  41. Kulkarni AP, Zhu Y, Babel A, Wu PT, Jenekhe SA (2008) New ambipolar organic semiconductors. 2. Effects of electron acceptor strength on intramolecular charge transfer photophysics, highly efficient electroluminescence, and field-effect charge transport of phenoxazine-based donor-acceptor materials. Chem Mater 20:4212–4223

    Article  CAS  Google Scholar 

  42. Jenekhe SA, Lu L, Alam MM (2001) New conjugated polymers with donor-acceptor architectures: synthesis and photophysics of carbazole-quinoline and phenothiazine-quinoline copolymers and oligomers exhibiting large intramolecular charge transfer. Macromolecules 34:7315–7324

    Article  CAS  Google Scholar 

  43. Jordan RB (1999) Reaction mechanisms of inorganic and organometallic systems, ch. 3, 3rd edn. Oxford University Press, USA, p. p. 66

    Google Scholar 

  44. Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA (2000) Electron and proton conducting polymers: recent developments and prospects. Electrochim Acta 45:2403–2421

    Article  CAS  Google Scholar 

  45. Baran D, Oktem G, Celebi S, Toppare L (2011) Neutral-state green conjugated polymers from pyrrole bis-substituted benzothiadiazole and benzoselenadiazole for electrochromic devices. Macromol Chem Phys 212:799–805

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Natural Science Foundation of China (grant numbers: 51572117, 51463008, 51303073), Ganpo Outstanding Talents 555 projects (2013), Key Project of Jiangxi Educational Committee (GJJ150795), Scientific Fund of Jiangxi Science & Technology Normal University (2014QNBJRC003), and National Undergraduate Scientific Research Project of China (201511318014) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoyang Lu or Jingkun Xu.

Additional information

Hongtao Liu and Shijie Zhen contributed equally to this work.

Electronic supplementary material

ESM 1

(DOC 609 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhen, S., Ming, S. et al. Furan and pyridinechalcogenodiazole-based π-conjugated systems via a donor-acceptor approach. J Solid State Electrochem 20, 2337–2349 (2016). https://doi.org/10.1007/s10008-016-3253-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3253-0

Keywords

Navigation