Skip to main content
Log in

Preparation of aqueous poly(3,4-ethylenedioxythiophene methanol)-poly(styrene sulfonate) dispersion and its capacitance performance as symmetric supercapacitors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Aqueous poly(3,4-ethylenedioxythiophene methanol)-poly(styrene sulfonate) dispersion (PEDTM-PSS) was prepared by chemical oxidation synthesis. As-formed PEDTM-PSS film was characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis, and scanning electron microscopy techniques. The results of Raman and FT-IR confirmed the formation of PEDTM-PSS. The electrochemical capacitance properties of PEDTM-PSS were firstly investigated in this paper by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscope techniques. PEDTM-PSS electrode showed a specific capacitance of 62.3 F g−1 at a current density of 0.5 A g−1 in 0.1 M LiClO4/ACN solution, which was higher than the value of poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) (50.5 F g−1). Furthermore, the energy density of assembled symmetric supercapacitor based on PEDTM-PSS was 2.4 Wh kg−1 at a power density of 325 W kg−1, which was also higher than that of PEDOT-PSS (1.6 Wh kg−1). Most importantly, the symmetric supercapacitor exhibited extraordinary stability up to 1000 cycles with a specific capacitance retention of 105 %. These results indicated that the PEDTM-PSS was a promising electrode material for the supercapacitors application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitor. Scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  2. Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11:4438–4442

    Article  CAS  Google Scholar 

  3. Yamazaki S, Takegawa A, Kaneko Y, Kadokawa J, Yamagata M, Ishikawa M (2009) An acidic cellulose-chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem Commun 11:68–70

    Article  CAS  Google Scholar 

  4. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4270

    Article  CAS  Google Scholar 

  5. Burke A (2000) Ultracapacitors: why, how, and where is the technology. J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  6. Liu MX, Gan LH, Xiong W, Zhu DZ, Xu ZJ, Chen LW (2013) Partially graphitic micro- and mesoporous carbon microspheres for supercapacitors. Chin Chem Lett 24:1037–1040

  7. Wang R, Miao X (2008) Development and application of large-power supercapacitor. Chin Batter Ind 3:015

    Google Scholar 

  8. Malinauskas A, Malinauskiene J, Ramanavičius A (2005) Conducting polymer-based nanostructurized materials: electrochemical aspects. Nanotechnology 16:R51

    Article  CAS  Google Scholar 

  9. Arbizzani C, Mastragostino M, Soavi F (2001) New trends in electrochemical supercapacitors. J Power Sources 100:164–170

    Article  CAS  Google Scholar 

  10. Ryu KS, Lee YG, Hong YS, Park YJ, Wu X, Kim KM, Kang MG, Park NG, Chang SH (2004) Poly(ethylenedioxythiophene) (PEDOT) as polymer electrode in redox supercapacitor. Electrochim Acta 50:843–847

    Article  CAS  Google Scholar 

  11. Lota K, Khomenko V, Frackowiak E (2004) Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solids 65:295–301

    Article  CAS  Google Scholar 

  12. Li W, Chen J, Zhao J, Zhang J, Zhu J (2005) Application of ultrasonic irradiation in preparing conducting polymer as active materials for supercapacitor. Mater Lett 59:800–803

    Article  CAS  Google Scholar 

  13. Liu R, Cho SI, Lee SB (2008) Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor. Nanotechnology 19:215710

    Article  Google Scholar 

  14. Heywang G, Jonas F (1992) Poly(alkylenedioxythiophene)s-new, very stable conducting polymers. Adv Mater 4:116–118

    Article  CAS  Google Scholar 

  15. McFarlane SL, Day BA, McEleney K, Freund MS, Lewis NS (2011) Designing electronic/ionic conducting membranes for artificial photosynthesis. Energ Environ Sci 4:1700–1703

    Article  CAS  Google Scholar 

  16. Chen S, Lu B, Xu J, Qin L, Wang Z, Duan X (2013) Preparation and characterization of aqueous dispersions of poly(3,4-ethylenedithiathiophene-co-3,4-ethylenedioxythiophene)/poly(styrene sulfonate) and their conducting films. J Appl Polym Sci 129:1717–1725

  17. Cuentas Gallegos AK, Rincón ME (2006) Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes for symmetric and asymmetric electrochemical capacitor cells. J Power Sources 162:743–747

    Article  CAS  Google Scholar 

  18. Antiohos D, Folkes G, Sherrell P, Ashraf S, Wallace GG, Aitchison P, Harris AT, Chen J, Minett AI (2011) Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. J Mater Chem 21:15987–15994

    Article  CAS  Google Scholar 

  19. Liu FJ (2008) Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)-polyaniline for supercapacitor. J Power Sources 182:383–388

    Article  CAS  Google Scholar 

  20. Jalili R, Razal JM, Wallace GG (2012) Exploiting high quality PEDOT:PSS-SWNT composite formulations for wet-spinning multifunctional fibers. J Mater Chem 22:25174–25182

    Article  CAS  Google Scholar 

  21. Chen L, Yuan C, Dou H, Gao B, Chen S, Zhang X (2009) Synthesis and electrochemical capacitance of core-shell poly(3,4-ethylenedioxythiophene)/poly(sodium 4-styrenesulfonate)-modified multiwalled carbon nanotube nanocomposites. Electrochim Acta 54:2335–2341

    Article  CAS  Google Scholar 

  22. Zhou HH, Han GY, Chang YZ, Fu DY, Xiao YM (2015) Highly stable multi-wall carbon nanotubes@poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) core-shell composites with three-dimensional porous nano-network for electrochemical capacitors. J Power Sources 274:229–236

  23. Huang LM, Lin HZ, Wen TC, Gopalan A (2006) Highly dispersed hydrous ruthenium oxide in poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) for supercapacitor electrode. Electrochim Acta 52:1058–1063

    Article  CAS  Google Scholar 

  24. Lee SH, Sohn JS, Kulkarni SB, Patil UM, Jun SC, Kim JH (2014) Modified physico-chemical properties and supercapacitive performance via DMSO inducement to PEDOT:PSS active layer. Org Electron 15:3423–3430

  25. Van Mullekom H, Vekemans J, Havinga E, Meijer E (2001) Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater Sci Eng R 32:1–40

    Article  Google Scholar 

  26. Zhang S, Xu J, Lu B, Qin L, Zhang L, Zhen S, Mo D (2014) Electrochromic enhancement of poly(3,4-ethylenedioxythiophene) films functionalized with hydroxymethyl and ethylene oxide. J Polym Sci Pol Chem Ed 52:1989–1999

    Article  CAS  Google Scholar 

  27. Skotheim TA, Reynolds JR (2006) Conjugated polymers: theory, synthesis, properties, and characterization 3

  28. Lu Y, Wen YP, Lu BY, Duan XM, Xu JK, Zhang L, Huang Y (2012) Electrosynthesis and characterization of poly(hydroxy-methylated-3,4-ethylenedioxythiophene) film in aqueous micellar solution and its biosensing application. Chin J Polym Sci A 30:824–836

    Article  CAS  Google Scholar 

  29. Plonska-Brzezinska ME, Lewandowski M, Błaszyk M, Molina-Ontoria A, Luciński T, Echegoyen L (2012) Preparation and characterization of carbon nano-onion/PEDOT: PSS composites. ChemPhysChem 13:4134–4141

    Article  CAS  Google Scholar 

  30. Mo D, Zhou W, Ma X, Xu J, Zhu D, Lu B (2014) Electrochemical synthesis and capacitance properties of a novel poly(3,4-ethylenedioxythiophene bis-substituted bithiophene) electrode material. Electrochim Acta 132:67–74

    Article  CAS  Google Scholar 

  31. Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energ Environ Sci 3:1294–1301

    Article  CAS  Google Scholar 

  32. Wu HB, Pang H, Lou XWD (2013) Facile synthesis of mesoporous Ni0.3Co2.7O4 hierarchical structures for high-performance supercapacitors. Energ Environ Sci 6:3619–3626

    Article  CAS  Google Scholar 

  33. Keawprajak A, Koetniyom W, Piyakulawat P, Jiramitmongkon K, Pratontep S, Asawapirom U (2013) Effects of tetramethylene sulfone solvent additives on conductivity of PEDOT: PSS film and performance of polymer photovoltaic cells. Org Electron 14:402–410

    Article  CAS  Google Scholar 

  34. Nguyen T, Le Rendu P, Long P, De Vos S (2004) Chemical and thermal treatment of PEDOT: PSS thin films for use in organic light emitting diodes. Surf Coat Technol 180:646–649

    Article  Google Scholar 

  35. Ouyang J, Chu CW, Chen FC, Xu Q, Yang Y (2004) Polymer optoelectronic devices with high-conductivity poly(3,4-ethylenedioxythiophene) anodes. J Macromol Sci A 41:1497–1511

    Article  Google Scholar 

  36. Alemu D, Wei HY, Ho KC, Chu CW (2012) Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energ Environ Sci 5:9662–9671

    Article  CAS  Google Scholar 

  37. Yue G, Wu J, Xiao Y, Lin J, Huang M, Fan L, Yao Y (2013) A dye-sensitized solar cell based on PEDOT: PSS counter electrode. Chin Sci Bull 58:559–566

    Article  CAS  Google Scholar 

  38. Friedel B, Keivanidis PE, Brenner TJ, Abrusci A, McNeill CR, Friend RH, Greenham NC (2009) Effects of layer thickness and annealing of PEDOT: PSS layers in organic photodetectors. Macromolecules 42:6741–6747

    Article  CAS  Google Scholar 

  39. Zhang X, Liu J, Xu B, Su Y, Luo Y (2011) Ultralight conducting polymer/carbon nanotube composite aerogels. Carbon 49:1884–1893

    Article  CAS  Google Scholar 

  40. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5:2188–2196

    Article  CAS  Google Scholar 

  41. Yang M, Cheng B, Song H, Chen X (2010) Preparation and electrochemical performance of polyaniline-based carbon nanotubes as electrode material for supercapacitor. Electrochim Acta 55:7021–7027

    Article  CAS  Google Scholar 

  42. Niu C, Sichel EK, Hoch R, Moy D, Tennent H (1997) High power electrochemical capacitors based on carbon nanotube electrodes. Appl Phys Lett 70:1480–1482

    Article  CAS  Google Scholar 

  43. Mo D, Zhou W, Ma X, Xu J, Jiang F, Zhu D (2014) Alkyl functionalized bithiophene end-capped with 3,4-ethylenedioxythiophene units: synthesis, electropolymerization and the capacitive properties of their polymers. Electrochim Acta 151:477–488

    Article  Google Scholar 

  44. Lu X, Wang G, Zhai T, Yu M, Xie S, Ling Y, Liang C, Tong Y, Li Y (2012) Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett 12:5376–5381

    Article  CAS  Google Scholar 

  45. Lu X, Zheng D, Zhai T, Liu Z, Huang Y, Xie S, Tong Y (2011) Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energ Environ Sci 4:2915–2921

    Article  CAS  Google Scholar 

  46. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4:1963–1970

    Article  CAS  Google Scholar 

  47. Miao YE, Fan W, Chen D, Liu T (2013) High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. ACS Appl Mater Interfaces 5:4423–4428

    Article  CAS  Google Scholar 

  48. Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22:3044–3052

    Article  CAS  Google Scholar 

  49. Sharma R, Rastogi A, Desu S (2008) Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem Commun 10:268–272

    Article  CAS  Google Scholar 

  50. An H, Wang Y, Wang X, Zheng L, Wang X, Yi L, Bai L, Zhang X (2010) Polypyrrole/carbon aerogel composite materials for supercapacitor. J Power Sources 195:6964–6969

    Article  CAS  Google Scholar 

  51. Fu C, Zhou H, Liu R, Huang Z, Chen J, Kuang Y (2012) Supercapacitor based on electropolymerized polythiophene and multi-walled carbon nanotubes composites. Mater Chem Phys 132:596–600

    Article  CAS  Google Scholar 

  52. Richard Prabhu Gnanakan S, Rajasekhar M, Subramania A (2009) Synthesis of polythiophene nanoparticles by surfactant-assisted dilute polymerization method for high performance redox supercapacitors. Int J Electrochem Sci 4:1289–1301

    Google Scholar 

  53. Li Y, Wang B, Chen H, Feng W (2010) Improvement of the electrochemical properties via poly(3,4-ethylenedioxythiophene) oriented micro/nanorods. J Power Sources 195:3025–3030

    Article  CAS  Google Scholar 

  54. Ma X, Zhou W, Mo D, Lu B, Jiang F, Xu J (2014) One-step template-free electrodeposition of novel poly(indole-7-carboxylic acid) nanowires and their high capacitance properties. RSC Adv 5:3215–3223

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant numbers: 51203070, 51303073, 51463008), Jiangxi Provincial Department of Education for postgraduate (YC2014-S435), Ganpo Outstanding Talents 555 projects (2013), the Training Plan for the Main Subject of Academic Leaders of Jiangxi Province (2011), and the Natural Science Foundation of Jiangxi Province (grant numbers: 20142BAB206028 and 20142BAB216029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkun Xu.

Additional information

Xiumei Ma and Weiqiang Zhou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Zhou, W., Wang, Z. et al. Preparation of aqueous poly(3,4-ethylenedioxythiophene methanol)-poly(styrene sulfonate) dispersion and its capacitance performance as symmetric supercapacitors. J Solid State Electrochem 19, 3329–3338 (2015). https://doi.org/10.1007/s10008-015-2939-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2939-z

Keywords

Navigation