Skip to main content
Log in

Electrochemical copolymerization of 9,10-dihydrophenanthrene and 3-methylthiophene and characterization of their copolymer with tunable fluorescence properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical copolymerization of 9,10-dihydrophenanthrene and 3-methylthiophene was successfully achieved in boron trifluoride diethyl etherate by direct anodic oxidation of the monomer mixtures. The structure and properties of the copolymers were investigated with ultraviolet–visible, Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance, fluorescence spectra, and thermal analysis. The novel copolymers had the advantages of both poly(9,10-dihydrophenanthrene) and poly(3-methylthiophene), such as good electrochemical behavior, good mechanical properties, and high electrical conductivity. Fluorescence spectroscopy studies revealed that the copolymers had good fluorescence properties, and the emitting properties of the copolymer could be parameters by changing the feed ratio of the monomer mixtures during the electrochemical polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cooper AI (2000) J Mater Chem 10:207–234

    Article  CAS  Google Scholar 

  2. Labaye DE, Jerome C, Geskin VM, Louette P, Lazzaroni R, Martinot L (2002) Langmuir 18:5222–5230

    Article  CAS  Google Scholar 

  3. Groenendaal L, Zotti G, Aubert PH, Waybright SM, Reynolds JR (2003) Adv Mater 15:855–879

    Article  CAS  Google Scholar 

  4. Kraft A, Grimsdale AC, Holmes AB (1998) Angew Chem Int Ed 37:402–428

    Article  Google Scholar 

  5. Killian JG, Coffey BM, Gao F, Pochler TO, Searson PC (1996) J Electrochem Soc 143:936–942

    Article  CAS  Google Scholar 

  6. Vorotyntsev MA, Casalta M, Pousson E, Roullier L, Boni G, Moise C (2001) Electrochim Acta 46:4017–4033

    Article  CAS  Google Scholar 

  7. Park YH, Kim SJ, Lee JY (2003) Thin Solid Films 425:233–238

    Article  CAS  Google Scholar 

  8. Iroh JO, Williams C (1999) Synth Met 99:1–8

    Article  CAS  Google Scholar 

  9. Groenendaal L, Jonas F, Freigag D, Pielartzik H, Reynolds JR (2000) Adv Mater 12:567–569

    Article  Google Scholar 

  10. Alkan S, Cutler CA, Reynolds JR (2003) Adv Funct Mater 13:331–336

    Article  CAS  Google Scholar 

  11. Tasch S, Graupner W, Leising G, Pu L, Wagner MW, Grubbs RH (1995) Adv Mater 7:903–906

    Article  CAS  Google Scholar 

  12. Zu G, Luo WK, Wu HQ (1999) Acta Chim Sinica 5:465–471

    Google Scholar 

  13. Hara S, Toshima N (1990) Chem Lett 19:269–272

    Article  Google Scholar 

  14. Lu BY, Zeng LQ, Xu JK, Nie GM, Cai T (2008) Acta Chim Sinica 13:1593–1598

    Google Scholar 

  15. Colaneri N, Nowak M, Spiegel D, Hotta S, Heeger AJ (1987) Phys Rev B 36:7964–7968

    Article  CAS  Google Scholar 

  16. Zhou L, Jin S, Xue G (1996) Macromol Chem Phys 197:3309–3315

    Article  CAS  Google Scholar 

  17. Wan XB, Zhang W, Jin S, Xue G, You QD, Che B (1999) J Electroanal Chem 470:23–30

    Article  CAS  Google Scholar 

  18. Li L, Chen W, Xu N, Xiao ZG, Xue G (2004) J Mater Sci 39:2395–2398

    Article  CAS  Google Scholar 

  19. Welzel HP, Kossmehl G, Schneider J, Plieth W (1995) Electrochim Acta 40:577–584

    Article  CAS  Google Scholar 

  20. Valaski R, Ayoub S, Micaroni L, Hummelgen IA (2002) J Solid State Electrochem 6:231–236

    Article  CAS  Google Scholar 

  21. Sarac SA, Jurgen S (2002) Surf Coat Technol 160:227–238

    Article  CAS  Google Scholar 

  22. Nie GM, Xu JK, Zhang SS, Cai T, Han XJ (2006) J Appl Polym Sci 102:1877–1885

    Article  CAS  Google Scholar 

  23. Fabre B, Kanoufi F, Simonet J (1997) J Electroanal Chem 434:225–234

    Article  CAS  Google Scholar 

  24. Li G, Kossmehl G, Welzel HP, Engelmann G, Hunnius WD, Plieth W, Zhu H (1998) Macromol Chem Phys 199:2255–2262

    Article  CAS  Google Scholar 

  25. Welzel HP, Kossmehl G, Engelmann G, Hunnius WD, Plieth W (1999) Electrochim Acta 44:1827–1832

    Article  CAS  Google Scholar 

  26. Wei ZH, Xu JK, Pu SZ, Du YK (2006) J Polym Sci Part Polym Chem 44:4904–4915

    Article  CAS  Google Scholar 

  27. Otero TF, Larreta ED (1988) Polymer 29:1522–1527

    Article  CAS  Google Scholar 

  28. Dhanalakshmi K, Saraswathi R (2001) J Mater Sci 36:4107–4115

    Article  CAS  Google Scholar 

  29. Fritz B, Paul R (2000) Electrochim Acta 45:2467–2482

    Article  Google Scholar 

  30. Li C, Shi G, Liang Y (1999) Synth Met 104:113–117

    Article  CAS  Google Scholar 

  31. Geissler U, Hallensleben ML, Rohde N, Rienecker A (1997) Synth Met 84:375–376

    Article  CAS  Google Scholar 

  32. Hernandez V, Casado J, Ramírez FJ, Zotti G, Hotta S, Navarrete JTL (1996) J Chem Phys 104:9271–9282

    Article  CAS  Google Scholar 

  33. Hotta S, Rughooputh SDDV, Heeger AJ, Wudl F (1987) Macromolecules 20:212–215

    Article  CAS  Google Scholar 

  34. Tasi FC, Chang CC, Liu CL, Chen WC, Jenekhe SA (2005) Macromolecules 38:1958–1966

    Article  Google Scholar 

  35. Truong VT, Ennis BC, Turner TG, Jenden CM (1992) Polym Int 27:187–195

    Article  Google Scholar 

  36. Thieblémont JC, Brun A, Marty J, Planche MF, Calo P (1995) Polymer 36:1605–1610

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the NSFC (50663001), the key scientific project from Ministry of Education, China (2007-207058), and Jiangxi province Jinggang Star Project (2008) Jiangxi Provincial Department of Education (GJJ08369) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingkun Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Lu, B., Fan, C. et al. Electrochemical copolymerization of 9,10-dihydrophenanthrene and 3-methylthiophene and characterization of their copolymer with tunable fluorescence properties. J Solid State Electrochem 14, 1153–1161 (2010). https://doi.org/10.1007/s10008-009-0945-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0945-8

Keywords

Navigation