Skip to main content
Log in

Exploration of variables in the fabrication of pyrolysed photoresist

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The increased use of pyrolysed photoresist films (PPF) as electrode material intensifies the need to know what fabrication variables are important in the pyrolysis process. The main factor effects of seven variables (three time/temperature heating levels plus the position in the furnace tube) in the fabrication of PPF were investigated by a Plackett and Burman, eight-run, experimental design. In the three-step pyrolysis programme, gas flow had a large effect on the surface cleanliness and roughness. It was also observed that the position in the furnace affected the resistivity of the PPF. Fabrication parameters that give rapid electron transfer to redox species in solution, that provide low surface oxide and that lead to low surface roughness were identified. The guidelines on what fabrication conditions to employ to give a variety of different electrode characteristics are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McCreery RL, Cline KK (1996) In: Kissinger PT, Heineman WR (eds) Laboratory techniques in electroanalytical chemistry. Marcel Dekker, New York, p 293

    Google Scholar 

  2. Downard AJ (2000) Electroanalysis 12:1085

    Article  CAS  Google Scholar 

  3. Gooding JJ, Mearns F, Yang W, Lui J (2003) Electroanalysis 15:81

    Article  CAS  Google Scholar 

  4. Jenkins GM, Kawamura K (1971) Nature 231:175

    Article  CAS  Google Scholar 

  5. Hui CZ, Feng L, Andrade JD (1988) Carbon 26:543

    Article  Google Scholar 

  6. Rothwell WS (1968) J Appl Phys 39:1840

    Article  CAS  Google Scholar 

  7. Saxena RR, Bragg RH (1978) J Non-Cryst Solids 28:45

    Article  CAS  Google Scholar 

  8. Brooksby PA, Downard AJ (2004) Langmuir 20:5038

    Article  CAS  Google Scholar 

  9. Anariba F, DuVall SH, McCreery RL (2003) Anal Chem 75:3837

    Article  CAS  Google Scholar 

  10. Ranganathan S, McCreery RL (2001) Anal Chem 73:893

    Article  CAS  Google Scholar 

  11. Kostecki R, Schnyder B, Alliata D, Song X, Kinoshita K, Kotz R (2001) Thin Solid Films 396:36

    Article  CAS  Google Scholar 

  12. Ranganathan S, McCreery RL, Majji SM, Madou M (2000) J Electrochem Soc 147:277

    Article  CAS  Google Scholar 

  13. Lyons AM, Wilkins CW Jr , Robbins, M (1983) Thin Solid Films 103:333

    CAS  Google Scholar 

  14. Yu SSC, Downard AJ (2005) J Surf Sci Nanotechnol 3:294

    Article  CAS  Google Scholar 

  15. Lyons AM (1985) J Non-Cryst Solids 70:99

    Article  CAS  Google Scholar 

  16. Lum R, Wilkins CW Jr, Robbins M, Lyons AM, Jones RP (1983) Carbon 21:111

    Article  CAS  Google Scholar 

  17. Kim J, Song X, Kinoshita K, Madou M, White R (1998) J Electrochem Soc 145:2314

    Article  CAS  Google Scholar 

  18. Park BY, Taherabadi L, Wang C, Zoval J, Madou MJ (2005) J Electrochem Soc 152:J136

    Article  CAS  Google Scholar 

  19. Singh A, Jayaram J, Madou MJ, Akbar S (2002) J Electrochem Soc 149:E78

    Article  CAS  Google Scholar 

  20. Lyons AM (1985) J Non-Cryst Solids 70:99

    Article  CAS  Google Scholar 

  21. Ranganathan S, McCreery RL, Majji SM, Madou M (2000) J Electrochem Soc 147:277

    Article  CAS  Google Scholar 

  22. Kostecki R, Song X, Kinoshita K (1999) Electrochem Solid-State Lett 2:465

    Article  CAS  Google Scholar 

  23. Brooksby PA, Downard AJ (2005) Langmuir 21:1672

    Article  CAS  Google Scholar 

  24. Yu SSC, Downard AJ (2005) e-J Surf Sci Nanotechnol 3:294

    Article  CAS  Google Scholar 

  25. Yu SSC, Downard AJ (2007) Langmuir 23:4662

    Article  CAS  Google Scholar 

  26. McCreery RL, Dieringer J, Osman Solak A, Snyder B, Nowak AM, McGovern WR, DuVall S (2003) J Am Chem Soc 125:10748

    Article  CAS  Google Scholar 

  27. Plackett RL, Burman JP (1946) Biometrika 33:305

    Article  Google Scholar 

  28. Brooksby PA, Downard AJ, Yu SSC (2005) Langmuir 21:11304

    Article  CAS  Google Scholar 

  29. Hibbert DB (2007) Quality assurance for the analytical chemistry laboratory. Oxford University Press, Oxford

    Google Scholar 

  30. Nicholson RS (1965) Anal Chem 37:1351

    Article  CAS  Google Scholar 

  31. Kneten Cline KR, McDermott MT, McCreery RL (1994) J Phys Chem 98:5314

    Article  Google Scholar 

  32. McCreery RL, Cline KK, McDermott CA, McDermott MT (1994) Colloids Surf A 93:211

    Article  CAS  Google Scholar 

  33. McCreery RL (1999) In: Wieckowski A (eds) Interfacial electrochemistry. Marcel Dekker, New York

    Google Scholar 

  34. Chen P, McCreery RL (1996) Anal Chem 68:3958

    Article  CAS  Google Scholar 

  35. Nicholson RS (1965) Anal Chem 37:1351

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Justin Gooding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fairman, C., Yu, S.S.C., Liu, G. et al. Exploration of variables in the fabrication of pyrolysed photoresist. J Solid State Electrochem 12, 1357–1365 (2008). https://doi.org/10.1007/s10008-008-0577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-008-0577-4

Keywords

Navigation