Skip to main content
Log in

Antimicrobial peptide ROAD–1 triggers phase change in local membrane environment to execute its activity

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Emergence of antibiotic-resistant pathogens has paved way for development of newer class of drugs that would not be susceptible to resistance. Antimicrobial peptides such as defensins that target the microbial membrane are promising candidates. ROAD–1 is an alpha-defensin present in the oral cavity of rhesus macaque and shares very high sequence similarity to human enteric defensin 5. In this study we have performed microsecond long all atom molecular dynamic simulations to understand the mechanism of action of ROAD–1. We find that ROAD–1 is able to adopt an energetically stable conformation predominantly stabilized by electrostatic interactions only in presence of bacterial membranes. In mammalian membrane even though it gets absorbed onto the bilayer, it is unable to adopt an equilibrium conformation. Binding of ROAD–1 to bilayer induces clustering of POPG molecules up to 15 Å around the peptide. POPG molecules show higher order parameters than the neighboring POPE implying coexistence of different phases. Analysis of binding free energy of ROAD–1–membrane complex indicates Arg1, Arg2, Arg7, and Arg25 to play key role in its antimicrobial activity. Unlike its homolog HD5, ROAD–1 is not observed to form a dimer. Our study gives insight into the membrane-bound conformation of ROAD–1 and its mechanism of action that can aid in designing defensin-based therapeutics.

Antimicrobial peptide ROAD–1 adopts a different membrane-bound conformation as compared with HD5 even though they belong to the same family implying a different mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ganz T (2003) Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3(9):710

    CAS  PubMed  Google Scholar 

  2. Stotz HU, Thomson J, Wang Y (2009) Plant defensins: defense, development and application. Plant Signal. Behav. 4(11):1010–1012

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jarczak J, Kościuczuk EM, Lisowski P et al (2013) Defensins: natural component of human innate immunity. Hum. Immunol. 74(9):1069–1079

    CAS  PubMed  Google Scholar 

  4. Selsted ME, Ouellette AJ (1995) Defensins in granules of phagocytic and non-phagocytic cells. Trends Cell Biol. 5(3):114–119

    CAS  PubMed  Google Scholar 

  5. Lehrer RI (2004) Primate defensins. Nat. Rev. Microbiol. 2(9):727

    CAS  PubMed  Google Scholar 

  6. Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6(6):551

    CAS  PubMed  Google Scholar 

  7. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature. 415(6870):389

    CAS  PubMed  Google Scholar 

  8. Wimley WC (2010) Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem. Biol. 5(10):905–917

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu Z, Hoover DM, Yang D et al (2003) Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human β-defensin 3. Proc. Natl. Acad. Sci. 100(15):8880–8885

    CAS  PubMed  Google Scholar 

  10. Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 29(9):464–472

    CAS  PubMed  Google Scholar 

  11. Hristova K, Selsted ME, White SH (1996) Interactions of monomeric rabbit neutrophil defensins with bilayers: comparison with dimeric human defensin HNP-2. Biochemistry. 35(36):11888–11894

    CAS  PubMed  Google Scholar 

  12. Wimley WC, Selsted ME, White SH (1994) Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores. Protein Sci. 3(9):1362–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sagaram US, El-Mounadi K, Buchko GW et al (2013) Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry. PLoS One 8(12):e82485

    PubMed  PubMed Central  Google Scholar 

  14. Järvå M, Lay FT, Phan TK et al (2018) X-ray structure of a carpet-like antimicrobial defensin–phospholipid membrane disruption complex. Nat. Commun. 9(1):1962

    PubMed  PubMed Central  Google Scholar 

  15. Cools TL, Vriens K, Struyfs C et al (2017) The antifungal plant defensin HsAFP1 is a phosphatidic acid-interacting peptide inducing membrane permeabilization. Front. Microbiol. 8:2295

    PubMed  PubMed Central  Google Scholar 

  16. Payne JAE, Bleackley MR, Lee T-H et al (2016) The plant defensin NaD1 introduces membrane disorder through a specific interaction with the lipid, phosphatidylinositol 4, 5 bisphosphate. Biochim Biophys Acta 1858(6):1099–1109

    CAS  PubMed  Google Scholar 

  17. Baxter AA, Poon IKH, Hulett MD (2017) The lure of the lipids: how defensins exploit membrane phospholipids to induce cytolysis in target cells. Nature Publishing Group, London

    Google Scholar 

  18. Phan TK, Lay FT, Poon IKH, Hinds MG, Kvansakul M, Hulett MD (2016) Human β-defensin 3 contains an oncolytic motif that binds PI (4, 5) P2 to mediate tumour cell permeabilisation. Oncotarget. 7(2):2054

    PubMed  Google Scholar 

  19. Seo ES, Blaum BS, Vargues T et al (2010) Interaction of human β-defensin 2 (HBD2) with glycosaminoglycans. Biochemistry. 49(49):10486–10495

    CAS  PubMed  Google Scholar 

  20. Schmitt P, Wilmes M, Pugnière M et al (2010) Insight into invertebrate defensin mechanism of action oyster defensins inhibit peptidoglycan biosynthesis by binding to lipid II. J. Biol. Chem. 285(38):29208–29216

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schneider T, Kruse T, Wimmer R et al (2010) Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II. Science. 328(5982):1168–1172

    CAS  PubMed  Google Scholar 

  22. Chileveru HR, Lim SA, Chairatana P, Wommack AJ, Chiang IL, Nolan EM (2015) Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5. Biochemistry. 54(9):1767–1777

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chu H, Pazgier M, Jung G et al (2012) Human α-defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science. 337(6093):477–481

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Islam KT, Velivelli SLS, Berg RH, Oakley B, Shah DM (2017) A novel bi-domain plant defensin MtDef5 with potent broad-spectrum antifungal activity binds to multiple phospholipids and forms oligomers. Sci. Rep. 7(1):16157

    PubMed  PubMed Central  Google Scholar 

  25. Järvå M, Lay FT, Hulett MD, Kvansakul M (2017) Structure of the defensin NsD7 in complex with PIP2 reveals that defensin: lipid oligomer topologies are dependent on lipid type. FEBS Lett. 591(16):2482–2490

    PubMed  Google Scholar 

  26. Baxter AA, Richter V, Lay FT et al (2015) The tomato defensin TPP3 binds phosphatidylinositol (4, 5)-bisphosphate via a conserved dimeric cationic grip conformation to mediate cell lysis. Mol Cell Biol 35(11):1964–1978

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Y, Doherty T, Li J et al (2010) Resonance assignment and three-dimensional structure determination of a human α-defensin, HNP-1, by solid-state NMR. J. Mol. Biol. 397(2):408–422

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hong M, Su Y (2011) Structure and dynamics of cationic membrane peptides and proteins: insights from solid-state NMR. Protein Sci. 20(4):641–655

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zou G, de Leeuw E, Li C et al (2007) Toward understanding the cationicity of defensins ARG and LYS versus their noncoded analogs. J. Biol. Chem. 282(27):19653–19665

    CAS  PubMed  Google Scholar 

  30. de Leeuw E, Rajabi M, Zou G, Pazgier M, Lu W (2009) Selective arginines are important for the antibacterial activity and host cell interaction of human α-defensin 5. FEBS Lett. 583(15):2507–2512

    PubMed  Google Scholar 

  31. Tanabe H, Qu X, Weeks CS et al (2004) Structure-activity determinants in paneth cell α-defensins loss-of-function in mouse cryptdin-4 by charge-reversal at arginine residue positions. J. Biol. Chem. 279(12):11976–11983

    CAS  PubMed  Google Scholar 

  32. Llenado RA, Weeks CS, Cocco MJ, Ouellette AJ (2009) Electropositive charge in α-defensin bactericidal activity: functional effects of Lys-for-Arg substitutions vary with the peptide primary structure. Infect. Immun. 77(11):5035–5043

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jung SW, Lee J, Cho AE (2017) Elucidating the bacterial membrane disruption mechanism of human α-Defensin 5: a theoretical study. J. Phys. Chem. B 121(4):741–748

    CAS  PubMed  Google Scholar 

  34. Wang C, Shen M, Gohain N et al (2015) Design of a potent antibiotic peptide based on the active region of human defensin 5. J. Med. Chem. 58(7):3083–3093

    CAS  PubMed  Google Scholar 

  35. Vasudevan S, Yuan J, Ösapay G et al (2008) Synthesis, structure, and activities of an oral mucosal α-defensin from rhesus macaque. J. Biol. Chem. 283(51):35869–35877

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang Y-Q, Yuan J, Miller CJ, Selsted ME (1999) Isolation, characterization, cDNA cloning, and antimicrobial properties of two distinct subfamilies of α-defensins from rhesus macaque leukocytes. Infect. Immun. 67(11):6139–6144

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Li J, Liu S, Lakshminarayanan R et al (2013) Molecular simulations suggest how a branched antimicrobial peptide perturbs a bacterial membrane and enhances permeability. Biochim. Biophys. Acta Biomembr. 1828(3):1112–1121

    CAS  Google Scholar 

  38. Sitaram N, Nagaraj R (1999) Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta 1462(1):29–54

    CAS  PubMed  Google Scholar 

  39. Murzyn K, Róg T, Pasenkiewicz-Gierula M (2005) Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. Biophys. J. 88(2):1091–1103

    CAS  PubMed  Google Scholar 

  40. Pastor RW, Feller SE (1996) Time scales of lipid dynamics and molecular dynamics. Biological Membranes. Springer, Berlin, pp 3–29

    Google Scholar 

  41. Hong C, Tieleman DP, Wang Y (2014) Microsecond molecular dynamics simulations of lipid mixing. Langmuir. 30(40):11993–12001

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Domański J, Stansfeld PJ, Sansom MSP, Beckstein O (2010) Lipidbook: a public repository for force-field parameters used in membrane simulations. J. Membr. Biol. 236(3):255–258

    PubMed  Google Scholar 

  43. Pronk S, Páll S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 29(7):845–854

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31(4):671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Best RB, Zhu X, Shim J et al (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J. Chem. Theory Comput. 8(9):3257–3273

    CAS  PubMed  PubMed Central  Google Scholar 

  46. MacKerell Jr AD, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18):3586–3616

    CAS  PubMed  Google Scholar 

  47. Klauda JB, Venable RM, Freites JA et al (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114(23):7830–7843

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2):926–935

    CAS  Google Scholar 

  49. Cuendet MA, van Gunsteren WF (2007) On the calculation of velocity-dependent properties in molecular dynamics simulations using the leapfrog integration algorithm. J Chem Phys 127(18):184102

    PubMed  Google Scholar 

  50. Hess B (2008) P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4(1):116–122

    CAS  PubMed  Google Scholar 

  51. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N· log (N) method for Ewald sums in large systems. J. Chem. Phys. 98(12):10089–10092

    CAS  Google Scholar 

  52. Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1):511–519

    Google Scholar 

  53. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31(3):1695

    CAS  Google Scholar 

  54. Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8):3684–3690

    CAS  Google Scholar 

  55. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12):7182–7190

    CAS  Google Scholar 

  56. Buchoux S (2016) FATSLiM: a fast and robust software to analyze MD simulations of membranes. Bioinformatics. 33(1):133–134

    PubMed  Google Scholar 

  57. Carr M, MacPhee CE (2015) Membrainy: a ‘smart’, unified membrane analysis tool. Source Code Biol Med 10(1):3

    PubMed  PubMed Central  Google Scholar 

  58. Kumari R, Kumar R, Open source drug discovery consortium, Lynn A (2014) g_mmpbsa-- a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54(7):1951–1962

    CAS  PubMed  Google Scholar 

  59. Homeyer N, Gohlke H (2012) Free energy calculations by the molecular mechanics Poisson− Boltzmann surface area method. Mol Inform 31(2):114–122

    CAS  PubMed  Google Scholar 

  60. Kollman PA, Massova I, Reyes C et al (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 33(12):889–897

    CAS  PubMed  Google Scholar 

  61. Kollman P (1993) Free-energy calculations—applications to chemical and biochemical phenomena. Chem. Rev. 93:2395–2417

    CAS  Google Scholar 

  62. Beveridge DL, Di Capua FM (1989) Free-energy via molecular simulation—applications to chemical and biomolecular systems. Annu. Rev. Biophys. Biophys. Chem. 18:431–492

    CAS  PubMed  Google Scholar 

  63. Straatsma TP, McCammon JA (1991) Multiconfiguration thermodynamic integration. J. Chem. Phys. 95:1175

    CAS  Google Scholar 

  64. Lee J, Jung SW, Cho AE (2016) Molecular insights into the adsorption mechanism of human β-defensin-3 on bacterial membranes. Langmuir. 32(7):1782–1790

    CAS  PubMed  Google Scholar 

  65. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13):1605–1612

    CAS  Google Scholar 

  66. Leekumjorn S, Sum AK (2007) Molecular characterization of gel and liquid-crystalline structures of fully hydrated POPC and POPE bilayers. J. Phys. Chem. B 111(21):6026–6033

    CAS  PubMed  Google Scholar 

  67. Hall K, Lee TH, Aguilar MI (2011) The role of electrostatic interactions in the membrane binding of melittin. J. Mol. Recognit. 24(1):108–118

    CAS  PubMed  Google Scholar 

  68. Jean-François F, Elezgaray J, Berson P, Vacher P, Dufourc EJ (2008) Pore formation induced by an antimicrobial peptide: electrostatic effects. Biophys. J. 95(12):5748–5756

    PubMed  PubMed Central  Google Scholar 

  69. Marrink SJ, De Vries AH, Tieleman DP (2009) Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim. Biophys. Acta Biomembr. 1788(1):149–168

    CAS  Google Scholar 

  70. Matyus E, Kandt C, Tieleman DP (2007) Computer simulation of antimicrobial peptides. Curr. Med. Chem. 14(26):2789–2798

    CAS  PubMed  Google Scholar 

  71. Kvansakul M, Lay FT, Adda CG et al (2016) Binding of phosphatidic acid by NsD7 mediates the formation of helical defensin–lipid oligomeric assemblies and membrane permeabilization. Proc. Natl. Acad. Sci. 113(40):11202–11207

    CAS  PubMed  Google Scholar 

  72. Zhang Y, Lu W, Hong M (2010) The membrane-bound structure and topology of a human α-defensin indicate a dimer pore mechanism for membrane disruption. Biochemistry. 49(45):9770–9782

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Rajabi M, Ericksen B, Wu X et al (2012) Functional determinants of human enteric α-defensin HD5: crucial role for hydrophobicity at the dimer interface. J. Biol. Chem. 287(26):21615–21627

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Raschig J, Mailänder-Sánchez D, Berscheid A et al (2017) Ubiquitously expressed human beta defensin 1 (hBD1) forms bacteria-entrapping nets in a redox dependent mode of action. PLoS Pathog. 13(3):e1006261

    PubMed  PubMed Central  Google Scholar 

  75. Li J, Garg M, Shah D, Rajagopalan R (2010) Solubilization of aromatic and hydrophobic moieties by arginine in aqueous solutions. J. Chem. Phys. 133(5):054902

    PubMed  Google Scholar 

  76. Su Y, Waring AJ, Ruchala P, Hong M (2010) Membrane-bound dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV TAT, from solid-state NMR. Biochemistry. 49(29):6009–6020

    CAS  PubMed  PubMed Central  Google Scholar 

  77. de Jong DH, Lopez CA, Marrink SJ (2013) Molecular view on protein sorting into liquid-ordered membrane domains mediated by gangliosides and lipid anchors. Faraday Discuss. 161:347–363

    PubMed  Google Scholar 

  78. Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science. 327(5961):46–50

    CAS  PubMed  Google Scholar 

  79. Carruthers A, Melchior DL (1988) Effects of lipid environment on membrane transport: the human erythrocyte sugar transport protein/lipid bilayer system. Annu. Rev. Physiol. 50(1):257–271

    CAS  PubMed  Google Scholar 

  80. Slater SJ, Kelly MB, Taddeo FJ, Ho C, Rubin E, Stubbs CD (1994) The modulation of protein kinase C activity by membrane lipid bilayer structure. J. Biol. Chem. 269(7):4866–4871

    CAS  PubMed  Google Scholar 

  81. Zhu W, Xiong L, Peng J, Deng X, Gao J, Li C-M (2016) Molecular insight into affinities of gallated and nongallated proanthocyanidins dimers to lipid bilayers. Sci Rep 6:37680

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Jang H, Ma B, Woolf TB, Nussinov R (2006) Interaction of protegrin-1 with lipid bilayers: membrane thinning effect. Biophys. J. 91(8):2848–2859

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Chen F-Y, Lee M-T, Huang HW (2003) Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation. Biophys. J. 84(6):3751–3758

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jefferies D, Hsu P-C, Khalid S (2017) Through the lipopolysaccharide glass: a potent antimicrobial peptide induces phase changes in membranes. Biochemistry. 56(11):1672–1679

    CAS  PubMed  Google Scholar 

  85. Waheed Q, Tjörnhammar R, Edholm O (2012) Phase transitions in coarse-grained lipid bilayers containing cholesterol by molecular dynamics simulations. Biophys. J. 103(10):2125–2133

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tristram-Nagle S, Nagle JF (2004) Lipid bilayers: thermodynamics, structure, fluctuations, and interactions. Chem. Phys. Lipids 127(1):3–14

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hancock REW (1997) Peptide antibiotics. Lancet 349(9049):418–422

    CAS  PubMed  Google Scholar 

  88. Bennett WFD, Hong CK, Wang Y, Tieleman DP (2016) Antimicrobial peptide simulations and the influence of force field on the free energy for pore formation in lipid bilayers. J. Chem. Theory Comput. 12(9):4524–4533

    CAS  PubMed  Google Scholar 

  89. Tanizaki S, Feig M (2005) A generalized born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes. J. Chem. Phys. 122(12):124706

    PubMed  Google Scholar 

  90. de Leeuw E, Burks SR, Li X, Kao JPY, Lu W (2007) Structure-dependent functional properties of human defensin 5. FEBS Lett. 581(3):515–520

    PubMed  PubMed Central  Google Scholar 

  91. Naafs MA (2018) The antimicrobial peptides: ready for clinical trials? Biomed J Sci Tech Res 7(4):6038–6042

    Google Scholar 

Download references

Acknowledgments

SV would like to thank Department of Science and Technology, Govt. of India, for financial assistance (grant number SR/WOS-A/LS-566/2013) and C-DAC national supercomputing facilities for computational support. We would like to acknowledge Prof. P. V. Balaji, IIT Bombay for his valuable comments and computational support. SV would like to thank Nitin Kachariya and Rajalakshmi Panigrahi for assistance in making figures. SV would like to thank Prof. Micheal Selsted and Prof. Melaine Cocco for initiation into the world of antimicrobial peptides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheeja V. Vasudevan.

Ethics declarations

Conflict of interest

The authors declare that they no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 42879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasudevan, S.V., Kumar, A. Antimicrobial peptide ROAD–1 triggers phase change in local membrane environment to execute its activity. J Mol Model 25, 281 (2019). https://doi.org/10.1007/s00894-019-4163-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4163-8

Keywords

Navigation