Skip to main content
Log in

The role of inserted polymers in polymeric insulation materials: insights from QM/MD simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this study, we performed a quantum chemical molecular dynamics (QM/MD) simulation to investigate the space charge accumulation process in copolymers of polyethylene (PE) with ethylene acrylic acid (EAA), ethylene vinyl acetate (EVA), styrene-ethylene-butadiene-styrene (SEBS), and black carbon (BC). We predicted that BC, especially branched BC, would possess the highest electron affinity and is identified as the most promising filler in power cable insulation. Following incorporations of 0–4 high-energy electrons into the composites, branched BC exhibited the highest stability and almost all electrons were trapped by it. Therefore, PE was protected efficiently and BC can be considered as an efficient filler for high voltage cables and an inhibitor of tree formation. On the contrary, although EAA, EVA, and SEBS can trap high-energy electrons, the latter can be supersaturated in composites of EAA, EVA, and SEBS with PE. The inserted polymers was unavoidably destroyed following C–H and C–O bond cleavage, which results from the interactions and charge transfer between PE and inserted polymers. The content effects of –COOH, benzene, and –OCOCH3 groups on the electron trapping, mobility and stability of PE were also investigated systematically. We hope this knowledge gained from this work will be helpful in understanding the role of inserted polymers and the growth mechanisms of electrical treeing in high voltage cable insulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–h
Fig. 2a,b
Fig. 3a–i
Fig. 4a–g
Fig. 5a–h
Fig. 6a–h

Similar content being viewed by others

References

  1. Vahedy V (2006) IEEE Electr Insul Magazine 22:13. https://doi.org/10.1109/MEI.2006.1639025

  2. Zhou K, Huang M, Tao W, He M (2016) IEEE Electr Insul Magazine 23:1854

  3. Gautam R, Vinu R, Sarathi R, Acharya S, Kumar M, Sharma A (2016) IEEE Electr Insul Magazine 23:1652. https://doi.org/10.1109/TDEI.2016.005621

  4. Chen X, Murdany D, Liu D, Andersson M (2016) IEEE Electr Insul Magazine 23:1506

  5. Kurnianto R, Murakami Y, Hozumi N, Nagao M (2007) IEEE Electr Insul Magazine 14:427. https://doi.org/10.1109/TDEI.2007.344623

  6. Li Z, Okamoto K, Ohki Y, Tanaka T (2011) IEEE Electr Insul Magazine 18:675. https://doi.org/10.1109/TDEI.2011.5931052

  7. Alapati S, Thomas MJ (2012) Influence of nano-fillers on electrical treeing in epoxy insulation. IET Sci Measure Technol 6: 21–28. :http://digital-library.theiet.org/content/journals/10.1049/iet-smt.2011.0046

  8. Yamano Y (2014) IEEE Electr Insul Magazine 21:209. https://doi.org/10.1109/TDEI.2013.003980

  9. Montanari GC, Fabiani D, Palmieri F, Kaempfer D, Thomann R, Mulhaupt R (2004) IEEE Electr Insul Magazine 11:754. https://doi.org/10.1109/TDEI.2004.1349780

  10. Tanaka T, Montanari GC, Mulhaupt R (2004) IEEE Electr Insul Magazine 11:763. https://doi.org/10.1109/TDEI.2004.1349782

  11. Tanaka T, Kozako M, Fuse N, Ohki Y (2005) IEEE Electr Insul Magazine 12:669. https://doi.org/10.1109/TDEI.2005.1511092

  12. Tanaka T (2005) IEEE Electr Insul Magazine 12:914. https://doi.org/10.1109/TDEI.2005.1522186

  13. Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R (2005) IEEE Electr Insul Magazine 12:629. https://doi.org/10.1109/TDEI.2005.1511089

  14. Iyer G, Gorur RS, Richert R, Krivda A, Schmidt LE (2011) IEEE Electr Insul Magazine 18:659. https://doi.org/10.1109/TDEI.2011.5931050

  15. Hosier IL, Vaughan AS, Swingler SG (1997). J Mater Sci 32:4523. https://doi.org/10.1023/A:1018617200285

    Article  CAS  Google Scholar 

  16. Ma Z, Wang G, Liu F, Jiang P (2010). Iran Polym J 19:353

    CAS  Google Scholar 

  17. Lee TH, Kim TY, Kim DM, Kim WJ, Lee JH, Suh KS (2006). Macromol Mater Eng 291:109. https://doi.org/10.1002/mame.200500286

    Article  CAS  Google Scholar 

  18. Ma Z, Jiang P, Wang L, Yang J (2010) J Appl Polym Sci 118:2350. https://doi.org/10.1002/app.32068

    CAS  Google Scholar 

  19. Guastavino F, Della Giovanna L, Torello E, Hoyos M, Tiemblo P (2014) Electrical treeing in LDPE-EVA blend based nanocomposites. In: 2014 I.E. Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). pp 780–783

  20. Guastavino F, Della Giovanna L, Torello E, Hoyos M, Tiemblo P (2015) Electrical treeing characterisation of nanocomposite blends. In: 2015 I.E. Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). pp 816–819

  21. Hosier IL, Vaughan AS, Tseng W (2007) Effect of polyethylene on morphology and dielectric breakdown in EVA blends. In: Solid Dielectrics, 2007. ICSD'07. IEEE International Conference (IEEE, 2007). pp 184–187

  22. Hosier IL, Vaughan AS, Swingler SG (2010). J Mater Sci 45:2747. https://doi.org/10.1007/s10853-010-4262-5

    Article  CAS  Google Scholar 

  23. Ke QQ, Huang XY, Wei P, Wang GL, Jiang PK (2006). Macromol Mater Eng 291:1271. https://doi.org/10.1002/mame.200600206

    Article  CAS  Google Scholar 

  24. Dang Z, Kang J, Tu D (2000) In: Proceedings of the Sixth International Conference on Properties and Applications of Dielectric Materials. Xi'An, China, 21–26 June 2000.

  25. Elstner M, Porezag D, Jungnickel G et al (1998) Phys Rev B 58:7260

    Article  CAS  Google Scholar 

  26. Aradi B, Hourahine B, Frauenheim T (2007) J Phys Chem A 111:5678. https://doi.org/10.1021/jp070186p

    Article  CAS  Google Scholar 

  27. Swope WC, Andersen HC, Berens PH, Wilson KR (1982) J Chem Phys 76:637

    Article  CAS  Google Scholar 

  28. Martyna GJ, Klein ML, Tuckerman M (1992) J Chem Phys 97:2635

    Article  Google Scholar 

  29. Wentzcovitch RM, Martins JL, Allen PB (1992) Phys Rev B 45:11372. https://doi.org/10.1103/PhysRevB.45.11372

    Article  CAS  Google Scholar 

  30. Li X-N, Wu Z-J, Si Z-J, Liang Z, Liu X-J, Zhang H-J (2009) Phys Chem Chem Phys 11:9687. https://doi.org/10.1039/B912243E

    Article  CAS  Google Scholar 

  31. Liu Y, Sun X, Gahungu G, Qu X, Wang Y, Wu Z (2013) J Mater Chem C 1:3700. https://doi.org/10.1039/C3TC30206G

    Article  CAS  Google Scholar 

  32. Han B, Jiao M, Li C et al (2015) Rsc Adv 6:555

    Article  Google Scholar 

  33. Lindemann FA (1910) Phys Z 11:609

    CAS  Google Scholar 

  34. Jiao M, Li K, Guan W et al (2015) Sci Rep 5:12091. https://doi.org/10.1038/srep12091

    Article  CAS  Google Scholar 

  35. Page AJ, Yamane H, Ohta Y, Irle S, Morokuma K (2010) J Am Chem Soc 132:15699

    Article  CAS  Google Scholar 

  36. Rojas L, Peraza A, Ruette F (2015) J Phys Chem A 119:13038. https://doi.org/10.1021/acs.jpca.5b07073

    Article  CAS  Google Scholar 

  37. Becke AD (1993) J Chem Phys 98:1372. https://doi.org/10.1002/anie.201101287

    Article  CAS  Google Scholar 

  38. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian, Inc., Wallingford

    Google Scholar 

  39. Jarvid M, Johansson A, Englund V et al (2015) J Mater Chem A 3:7273. https://doi.org/10.1039/C4TA04956J

    Article  CAS  Google Scholar 

  40. Yamano Y (2006) IEEE Trans Dielectr Electr Insul 13:773. https://doi.org/10.1109/TDEI.2006.1667735

    Article  CAS  Google Scholar 

  41. Meunier M, Quirke N (2000) J Chem Phys 113:369. https://doi.org/10.1063/1.481802

    Article  CAS  Google Scholar 

  42. Ko JW, Suh KS, Lee SH (2006) J Appl Polym Sci 101:420. https://doi.org/10.1002/app.22840

    Article  CAS  Google Scholar 

  43. Lewis TJ (2004) IEEE Trans Dielectr Electr Insul 11:739. https://doi.org/10.1109/TDEI.2004.1349779

    Article  CAS  Google Scholar 

  44. Zhou Y, Karplus M, Ball KD, Berry RS (2002) J Chem Phys 116:2323. https://doi.org/10.1063/1.1426419

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Key Laboratory of Engineering Dielectrics and Its Application (Harbin University of Science and Technology), Ministry of Education, Natural Science Foundation for Distinguished Young Scholars of Heilongjiang Province (JC201409), National Science Foundation of China (grant No. 21203174, 21221061, 21273219, 21673220, 51337002), and the Natural Science Foundation of Jilin Province (No. 20150101012JC). The computational resource is supported partly by the Performance Computing Center of Jilin University, China. We are also grateful to the Computing Center of Jilin Province and Changchun Normal University for essential support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Zhao, Ying Wang or Baozhong Han.

Electronic supplementary material

ESM 1

(DOCX 33.4 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhao, H., Zhang, H. et al. The role of inserted polymers in polymeric insulation materials: insights from QM/MD simulations. J Mol Model 24, 73 (2018). https://doi.org/10.1007/s00894-018-3618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3618-7

Keywords

Navigation