Skip to main content

Advertisement

Log in

Antiradical capacity of ommochromes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Ommochromes are colored substances that apparently function as biological signals among arthropods and insects. These substances may prevent oxidative stress by scavenging free radicals. Two principal mechanisms exist for scavenging free radicals: the electron transfer and hydrogen atom transfer. In this investigation, a theoretical study of the antiradical capacity of five ommochromes was performed within the density functional theory framework. Vertical ionization energy and vertical electron affinity were used to study the electron transfer mechanism between ommochromes and four free radicals: CH3O•, NO2•, HO•, and HOO•. For the hydrogen transfer mechanism, dissociation energy (D0) and Gibbs free energy were calculated, taking into account hydrogen atoms at different positions in the ommochromes. Both mechanisms are thermodynamically possible. The best antiradical is ommatin D. The UV/VIS spectra for ommochromes were obtained with ommatin D registering as the ommochrome with the greatest λmax value. In summary, ommatin D is the best antiradical and also the redder molecule. These results are important and may help to elucidate the function of these molecules in the animal kingdom.

Ommochromes are red and yellow substances present in arthropods and insects. According with computational chemistry, these substances present the capacity of prevent oxidative stress since they scavenge free radicals. These results may help to elucidate the function of these molecules in the animal Kingdom

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Choi J, Corder NLB, Koduru B, Wang Y (2014) Free Rad Biol Med 72:267

    Article  CAS  Google Scholar 

  2. Saeidnia S, Abdillahi M (2013) Tox App Pharma 273:442

    Article  CAS  Google Scholar 

  3. Yan MH, Wang X, Zhu X (2013) Free Rad Biol Med 62:90

    Article  CAS  Google Scholar 

  4. Lin MT, Beal MF (2006) Nature 443:787

    Article  CAS  Google Scholar 

  5. Reddy PHJ (2006) Neurochem 96:1

    Article  CAS  Google Scholar 

  6. Schoencich C (2005) Biochim Biophys Acta 1703:111

    Article  Google Scholar 

  7. Giasson BI, Ischiropoulos H, Lee VMY, Trojanowsky JQ (2002) Free Rad Biol Med 32:1264

    Article  CAS  Google Scholar 

  8. Perry G, Raina AK, Nunomura A, Wataya T, Sayre LM, Smith MA (2000) Free Rad Biol Med 28:831

    Article  CAS  Google Scholar 

  9. Perry G, Castellani RJ, Hirai K, Smith MA (1998) J Alzheimer's Dis 1:45

    CAS  Google Scholar 

  10. Burton GW, Ingold KU (1984) Science 224:569

    Article  CAS  Google Scholar 

  11. Martínez A, Barbosa A (2008) J Phys Chem B 112:16945

    Article  Google Scholar 

  12. Martínez A, Rodríguez-Gironés MA, Barbosa A, Costas M (2008) J Phys Chem A 112:9037

    Article  Google Scholar 

  13. Avelar M, Martínez A (2012) J Mex Chem Soc 56:250

    CAS  Google Scholar 

  14. Martínez A (2009) J Phys Chem B 113:4915

    Article  Google Scholar 

  15. Martínez A, Vargas R, Galano A (2009) J Phys Chem B 113:12113

    Article  Google Scholar 

  16. Galano A (2007) J Phys Chem B 111:12898

    Article  CAS  Google Scholar 

  17. Martínez A, Hernández-Marin E, Galano A (2012) Food Funct 3:442

    Article  Google Scholar 

  18. Riou M, Christidès JP (2010) J Chem Ecol 36:412

    Article  CAS  Google Scholar 

  19. Thery M, Casas J (2002) Philos Trans R Soc Lond B Biol Sci 363:471

    Google Scholar 

  20. Wadano A, Takenaka Y, Matumoto M (1993) Insect Biochem Molec Biol 23:919–925

    Article  CAS  Google Scholar 

  21. Lugo-Huitrón R, Blanco-Ayala T, Ugalde-Muñiz P, Carrillo-Mora P, Pedraza-Chaverrí J, Silva-Adaya D, Maldonado PD, Torres I, Pinzón E, Ortíz-Islas E, López T, García E, Pineda B, Torres-Ramos M, Santamaría A, La Cruz VP (2011) Neurotoxicol Teratol 33:538

    Article  Google Scholar 

  22. Linzen B (1974) Adv Insect Physiol 10:177

    Google Scholar 

  23. Colín-González AL, Maldonado PD, Santamaría A (2013) NeuroToxicol 34:189

    Article  Google Scholar 

  24. Wang Y, Liu H, McKenzie G, Witting PK, Stasch JP, Hahn M, Changsirivathanathamrong D, Wu BJ, Ball HJ, Thomas SR, Kapoor V, Celermajer DS, Mellor AL, Keaney JF Jr, Hunt NH, Stocker R (2010) Nat Med 16:279

    Article  CAS  Google Scholar 

  25. Nguyen NT, Kimura A, Nakahama T, Chinen I, Masuda K, Nohara K, Fujii-Kuriyama Y, Kishimoto T (2010) Proc Natl Acad Sci USA 107:19961

    Article  CAS  Google Scholar 

  26. Zelentsova E, Sherin P, Snytnikova O, Kaptein R (2013) Photochem Photobiol Sci 12:546

    Article  CAS  Google Scholar 

  27. Halgren TA (1996) J Comp Chem 17:490

    Article  CAS  Google Scholar 

  28. Halgren TA (1996) J Comp Chem 17:520

    Article  CAS  Google Scholar 

  29. Halgren TA (1996) J Comp Chem 17:553

    Article  CAS  Google Scholar 

  30. Halgren TA, Nachbar RB (1996) J Comp Chem 17:587

    CAS  Google Scholar 

  31. Halgren TA (1996) J Comp Chem 17:616

    Article  CAS  Google Scholar 

  32. Gaussian 09, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Computational models. Gaussian Inc, Wallingford

    Google Scholar 

  33. Becke AD (1998) Phys Rev A 38:3098

    Article  Google Scholar 

  34. Mielich B, Savin H, Stoll H, Peuss H (1989) Chem Phys Lett 157:200

    Article  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  36. Marenich AV, Cramer CJ, Truhlar DG (2009) J Phys Chem B 113:6378

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was funded by DGAPA-PAPIIT, Consejo Nacional de Ciencia y Tecnología (CONACyT), and resources provided by the Instituto de Investigaciones en Materiales (IIM). This work was carried out using a NES supercomputer, provided by Dirección General de Cómputo y Tecnologías de Información y Comunicación (DGTIC), Universidad Nacional Autónoma de México (UNAM). We would like to thank the DGTIC of UNAM for their excellent and free supercomputing services. Yanet Romero thanks CONACyT by scholarship number 202990.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Martínez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 23203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, Y., Martínez, A. Antiradical capacity of ommochromes. J Mol Model 21, 220 (2015). https://doi.org/10.1007/s00894-015-2773-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2773-3

Keywords

Navigation