Skip to main content
Log in

The performance of methallyl nickel complexes and boron adducts in the catalytic activation of ethylene: a conceptual DFT perspective

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

In this work, global and local descriptors of chemical reactivity and selectivity are used to explain the differences in reactivities toward ethylene of methallyl nickel complexes and their B(C6F5)3 and BF3 adducts. DFT calculations were used to explain why nickel complexes alone are inactive in ethylene polymerization while their boron adducts can activate it. It is shown that chemical potential, hardness, electrophilicity and molecular electrostatic potential surfaces describe fairly well the reactivity and selectivity of these organometallic systems toward ethylene. Experimental data indicates that addition of a borane molecule to nickel complexes changes dramatically their reactivity—behavior that is confirmed computationally. Our results show that bare complexes are unable to activate ethylene—a Lewis base—because they also behave as Lewis bases. The addition of the co-catalyst—a Lewis acid—turns the adducts into Lewis acids, making them active towards ethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2a,b
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ittel SD, Johnson LK, Brookhart M (2000) Chem Rev 100:1169–1204

    Article  CAS  Google Scholar 

  2. Camacho DH, Guan Z (2005) Macromolecules 38:2544

    Article  CAS  Google Scholar 

  3. Liu FS, Hu HB, Xu Y, Guo LH, Zai SB, Song KM, Gao HY, Zhang L, Zhu FM, Wu Q (2009) Macromolecules 42:7789

    Article  CAS  Google Scholar 

  4. Tomita T, Takahama T, Sugimoto M, Sakaki S (2002) Organometallics 21:4138

    Article  CAS  Google Scholar 

  5. Hicks FA, Brookhart M (2001) Organometallics 20:3217

    Article  CAS  Google Scholar 

  6. Zai S, Gao H, Huang Z, Hu H, Wu H, Wu Q (2012) ACS Catal 2:440

    Article  Google Scholar 

  7. Hu T, Tang LM, Li XF, Li YS, Hu NH (2005) Organometallics 24:2628

    Article  CAS  Google Scholar 

  8. You-Xian Chen E, Marks TJ (2000) Chem Rev 100:1391

    Article  Google Scholar 

  9. Yaofeng C, Gang W, Bazan G (2005) Angew Chem Int Ed 44:1108

    Article  Google Scholar 

  10. Dahlmann M, Erker G, Fröhlich R, Meyer O (2000) Organometallics 19:2956

    Article  CAS  Google Scholar 

  11. Makio H, Terao H, Iwashita A, Fujita T (2011) Chem Rev 111:2363

    Article  CAS  Google Scholar 

  12. Deng L, Woo TK, Cavallo L, Margl PM, Ziegler T (1997) J Am Chem Soc 119:6177

    Article  CAS  Google Scholar 

  13. Delferro M, Marks T (2011) J Chem Rev 111:2450

    Article  CAS  Google Scholar 

  14. Popeney CS, Rheingold AL, Guan Z (2009) Organometallics 28:4452

    Article  CAS  Google Scholar 

  15. Popeney CS, Levins CM, Guan Z (2011) Organometallics 30:2432

    Article  CAS  Google Scholar 

  16. Azoulay JD, Gao H, Koretz ZA, Kehr G, Erker G, Shimizu GB (2012) Macromolecules 45:4487

    Article  CAS  Google Scholar 

  17. Peoples B, Rojas RS (2011) Development of imine derivative ligands for the exocyclic activation of late transition metal polymerization catalysts. In: Olefin upgrading catalysis by nitrogen based metal complexes II. Springer, Berlin, pp 39–75

  18. Azoulay JD, Rojas RS, Serrano AV, Ohtaki H, Galland GB, Wu G, Bazan GC (2009) Angew Chem Int Ed 48:1089

    Article  CAS  Google Scholar 

  19. Lee BY, Bazan GC, Vela J, Komon ZJ, Bu X (2001) J Am Chem Soc 123:5352

    Article  CAS  Google Scholar 

  20. Komon ZJ, Bu X, GC B (2000) J Am Chem Soc 122:1830

    Article  CAS  Google Scholar 

  21. Boardman BM, Valderrama JM, Muñoz F, Wu G, Bazan GC, Rojas R (2008) Organometallics 27:1671

    Article  CAS  Google Scholar 

  22. Trofymchuk OS, Gutsulyak DV, Quintero C, Parvez M, Daniliuc GC, Piers WE, Rojas R (2013) Organometallics 32:7323

    Article  CAS  Google Scholar 

  23. Trofymchuk OS, Galland GB, Milani MA, Rojas RS (2014) J Polym Sci A Polym Chem 53:452

    Article  Google Scholar 

  24. Sahu C, Pakhira S, Sen K, Das KA (2013) J Phys Chem A 117:3496

    Article  CAS  Google Scholar 

  25. Salciccioli M, Vlachos DG (2012) J Phys Chem A 116:4621

    Article  CAS  Google Scholar 

  26. Xu R, Bittner M, Klatt G, Köppel H (2008) J Phys Chem A 112:13139

    Article  CAS  Google Scholar 

  27. Chiodo S, Rivalta I, Michelini MC, Russo N, Sicilia E, Ugalde JM (2006) J Phys Chem A 110:12501

    Article  CAS  Google Scholar 

  28. Bernardi F, Bottoni A, Rossi I (1998) J Am Chem Soc 120:7770

    Article  CAS  Google Scholar 

  29. Huang J, Häussinger D, Gellrich U, Seiche W, Breit B, Meuwly M (2012) J Phys Chem B 116:14406

    Article  CAS  Google Scholar 

  30. Houk KN, Cheong PHY (2008) Nature 455:309

    Article  CAS  Google Scholar 

  31. Galland G, Bazan GC (2012) Macromolecules 45:4487

    Article  Google Scholar 

  32. Chan MSW, Deng L, Ziegler T (2000) Organometallics 19:2741

    Article  CAS  Google Scholar 

  33. Michalak A, Ziegler T (2001) Organometallics 20:1521

    Article  CAS  Google Scholar 

  34. Michalak A, Ziegler T (2003) Organometallics 22:2660–2669

    Article  CAS  Google Scholar 

  35. Parafiniuk M, Mitoraj MP (2013) Organometallics 32:4103

    Article  CAS  Google Scholar 

  36. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  37. Martinez J, Cruz V, Ramos J, Gutierrez-Oliva S, Martinez-Salazar J, Toro-Labbe A (2008) J Phys Chem C 112:5023

    Article  CAS  Google Scholar 

  38. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  39. Mulliken RS (1934) J Chem Phys 2:782

    Article  CAS  Google Scholar 

  40. Toro-Labbe A (1999) J Phys Chem A 103:4398

    Article  CAS  Google Scholar 

  41. Jaque P, Toro-Labbe A (2000) J Phys Chem A 104:995

    Article  CAS  Google Scholar 

  42. Chattaraj PK, Gutierrez-Oliva S, Jaque P, Toro-Labbe A (2003) Mol Phys 101:2841

    Article  CAS  Google Scholar 

  43. Rincon E, Jaque P, Toro-Labbe A (2006) J Phys Chem A 110:9478

    Article  CAS  Google Scholar 

  44. Koopmans TA (1933) Physica 1:104

    Article  CAS  Google Scholar 

  45. Geerlings P, Proft F, Langenaeker W (2003) Chem Rev 103:1793

    Article  CAS  Google Scholar 

  46. Parr RG, Szentpaly L, Liu S (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  47. Politzer P, Murray JS (2002) Theor Chem Acc 108:134

    Article  CAS  Google Scholar 

  48. Politzer P, Truhlar D (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Book  Google Scholar 

  49. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T Jr, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford

    Google Scholar 

  50. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  51. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  52. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  53. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  54. Chiodo S, Russo N (2006) Sicilia E J Chem Phys 125:104107

    Article  CAS  Google Scholar 

  55. Cabrera AR, Schneider Y, Valderrama M, Frohlich R, Kehr G, Erker G, Rojas RS (2010) Organometallics 29:6104

    Article  CAS  Google Scholar 

  56. Spannhoff K, Rojas R, Fröhlich R, Kehr G, Erker G (2011) Organometallics 30:2377

    Article  CAS  Google Scholar 

  57. Rojas RS, Peoples B, Cabrera AR, Valderrama M, Fröhlich R, Kehr G, Erker G, Wiegand T, Eckert H (2011) Organometallics 30:6372

    Article  CAS  Google Scholar 

  58. Komon ZJA, Bazan GC, Fang C, Bu X (2003) Inorg Chim Acta 95:345

    Google Scholar 

  59. Bönnemann H, Jentsch JD (1993) Appl Organomet Chem 7:553

    Article  Google Scholar 

  60. Aihara J (1999) J Phys Chem A 103:7487

    Article  CAS  Google Scholar 

  61. Alcaraz G, Grellier M, Sabo-Etienne S (2009) Acc Chem Res 42:1640–1649

    Article  CAS  Google Scholar 

  62. Yarrow DJ, Ibers JA, Tatsuno Y, Otsuka S (1973) J Am Chem Soc 95:8590

    Article  CAS  Google Scholar 

  63. Otten E, Meetsma A, Hessen B (2012) Organometallics 31:6071

    Article  CAS  Google Scholar 

  64. Coletti C, Marrone A, Nazzareno R (2012) Acc Chem Res 45:139

    Article  CAS  Google Scholar 

  65. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  66. Pearson RG (1997) Chemical hardness. applications from molecules to solids. Wiley-VCH, Weinheim

    Google Scholar 

  67. Pearson RG (1987) J Chem Educ 64:561

    Article  CAS  Google Scholar 

  68. Parr RG, Zhou Z (1993) Acc Chem Res 26:256

    Article  CAS  Google Scholar 

  69. Cárdenas-Jirón GI, Zagal JH (2001) J Electroanal Chem 497:55

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from ICM N° 120082 (Nucleus Millenium CPC) and Fondo Nacional de Desarrollo Científico y Tecnológico(FONDECYT) projects Nos. 1100286, 1130072, l130077 and 1141098 are gratefully acknowledged. O. S. T. and D.E.O. acknowledge Vicerrectoría de Investigación of Pontificia Universidad Católica de Chile and La Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) for PhD fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soledad Gutiérrez-Oliva, René S. Rojas or Alejandro Toro-Labbé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trofymchuk, O.S., Ortega, D.E., Gutiérrez-Oliva, S. et al. The performance of methallyl nickel complexes and boron adducts in the catalytic activation of ethylene: a conceptual DFT perspective. J Mol Model 21, 227 (2015). https://doi.org/10.1007/s00894-015-2770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2770-6

Keywords

Navigation